期刊文献+
共找到11,224篇文章
< 1 2 250 >
每页显示 20 50 100
Influencer identification of dynamical networks based on an information entropy dimension reduction method
1
作者 段东立 纪思源 袁紫薇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期375-384,共10页
Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks,... Identifying critical nodes or sets in large-scale networks is a fundamental scientific problem and one of the key research directions in the fields of data mining and network science when implementing network attacks, defense, repair and control.Traditional methods usually begin from the centrality, node location or the impact on the largest connected component after node destruction, mainly based on the network structure.However, these algorithms do not consider network state changes.We applied a model that combines a random connectivity matrix and minimal low-dimensional structures to represent network connectivity.By using mean field theory and information entropy to calculate node activity,we calculated the overlap between the random parts and fixed low-dimensional parts to quantify the influence of node impact on network state changes and ranked them by importance.We applied this algorithm and the proposed importance algorithm to the overall analysis and stratified analysis of the C.elegans neural network.We observed a change in the critical entropy of the network state and by utilizing the proposed method we can calculate the nodes that indirectly affect muscle cells through neural layers. 展开更多
关键词 dynamical networks network influencer low-dimensional dynamics network disintegration
下载PDF
Spontaneous Recovery in Directed Dynamical Networks
2
作者 Xueming Liu Xian Yan H.Eugene Stanley 《Engineering》 SCIE EI CAS CSCD 2024年第6期208-214,共7页
Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneous... Complex networked systems,which range from biological systems in the natural world to infrastructure systems in the human-made world,can exhibit spontaneous recovery after a failure;for example,a brain may spontaneously return to normal after a seizure,and traffic flow can become smooth again after a jam.Previous studies on the spontaneous recovery of dynamical networks have been limited to undirected networks.However,most real-world networks are directed.To fill this gap,we build a model in which nodes may alternately fail and recover,and we develop a theoretical tool to analyze the recovery properties of directed dynamical networks.We find that the tool can accurately predict the final fraction of active nodes,and the prediction accuracy decreases as the fraction of bidirectional links in the network increases,which emphasizes the importance of directionality in network dynamics.Due to different initial states,directed dynamical networks may show alternative stable states under the same control parameter,exhibiting hysteresis behavior.In addition,for networks with finite sizes,the fraction of active nodes may jump back and forth between high and low states,mimicking repetitive failure-recovery processes.These findings could help clarify the system recovery mechanism and enable better design of networked systems with high resilience. 展开更多
关键词 network resilience Directed dynamical networks Spontaneous recovery
下载PDF
Target layer state estimation in multi-layer complex dynamical networks considering nonlinear node dynamics
3
作者 吴亚勇 王欣伟 蒋国平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期245-252,共8页
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ... In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method. 展开更多
关键词 multi-layer complex dynamical network nonlinear node dynamics target state estimation functional state observer
下载PDF
UAV-assisted data collection for wireless sensor networks with dynamic working modes 被引量:1
4
作者 Jie Chen Jianhua Tang 《Digital Communications and Networks》 SCIE CSCD 2024年第3期805-812,共8页
Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).I... Wireless Sensor Network(WSN)is a cornerstone of Internet of Things(IoT)and has rich application scenarios.In this work,we consider a heterogeneous WSN whose sensor nodes have a diversity in their Residual Energy(RE).In this work,to protect the sensor nodes with low RE,we investigate dynamic working modes for sensor nodes which are determined by their RE and an introduced energy threshold.Besides,we employ an Unmanned Aerial Vehicle(UAV)to collect the stored data from the heterogeneous WSN.We aim to jointly optimize the cluster head selection,energy threshold and sensor nodes’working mode to minimize the weighted sum of energy con-sumption from the WSN and UAV,subject to the data collection rate constraint.To this end,we propose an efficient search method to search for an optimal energy threshold,and develop a penalty-based successive convex approximation algorithm to select the cluster heads.Then we present a low-complexity iterative approach to solve the joint optimization problem and discuss the implementation procedure.Numerical results justify that our proposed approach is able to reduce the energy consumption of the sensor nodes with low RE significantly and also saves energy for the whole WSN. 展开更多
关键词 Unmanned aerial vehicle Wireless sensor networks Cluster heads dynamic working modes
下载PDF
Dynamic analysis of major public health emergency transmission considering the dual-layer coupling of community–resident complex networks
5
作者 杨鹏 范如国 +1 位作者 王奕博 张应青 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期158-169,共12页
We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It cha... We construct a dual-layer coupled complex network of communities and residents to represent the interconnected risk transmission network between communities and the disease transmission network among residents. It characterizes the process of infectious disease transmission among residents between communities through the SE2IHR model considering two types of infectors. By depicting a more fine-grained social structure and combining further simulation experiments, the study validates the crucial role of various prevention and control measures implemented by communities as primary executors in controlling the epidemic. Research shows that the geographical boundaries of communities and the social interaction patterns of residents have a significant impact on the spread of the epidemic, where early detection, isolation and treatment strategies at community level are essential for controlling the spread of the epidemic. In addition, the study explores the collaborative governance model and institutional advantages of communities and residents in epidemic prevention and control. 展开更多
关键词 propagation dynamics complex networks public health events community structure
下载PDF
A Neural-network-based Alternative Scheme to Include Nonhydrostatic Processes in an Atmospheric Dynamical Core
6
作者 Yang XIA Bin WANG +13 位作者 Lijuan LI Li LIU Jianghao LI Li DONG Shiming XU Yiyuan LI Wenwen XIA Wenyu HUANG Juanjuan LIU Yong WANG Hongbo LIU Ye PU Yujun HE Kun XIA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1083-1099,I0002,I0003,共19页
Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostat... Here,a nonhydrostatic alternative scheme(NAS)is proposed for the grey zone where the nonhydrostatic impact on the atmosphere is evident but not large enough to justify the necessity to include an implicit nonhydrostatic solver in an atmospheric dynamical core.The NAS is designed to replace this solver,which can be incorporated into any hydrostatic models so that existing well-developed hydrostatic models can effectively serve for a longer time.Recent advances in machine learning(ML)provide a potential tool for capturing the main complicated nonlinear-nonhydrostatic relationship.In this study,an ML approach called a neural network(NN)was adopted to select leading input features and develop the NAS.The NNs were trained and evaluated with 12-day simulation results of dry baroclinic-wave tests by the Weather Research and Forecasting(WRF)model.The forward time difference of the nonhydrostatic tendency was used as the target variable,and the five selected features were the nonhydrostatic tendency at the last time step,and four hydrostatic variables at the current step including geopotential height,pressure in two different forms,and potential temperature,respectively.Finally,a practical NAS was developed with these features and trained layer by layer at a 20-km horizontal resolution,which can accurately reproduce the temporal variation and vertical distribution of the nonhydrostatic tendency.Corrected by the NN-based NAS,the improved hydrostatic solver at different horizontal resolutions can run stably for at least one month and effectively reduce most of the nonhydrostatic errors in terms of system bias,anomaly root-mean-square error,and the error of the wave spatial pattern,which proves the feasibility and superiority of this scheme. 展开更多
关键词 neural network nonhydrostatic alternative scheme atmospheric model dynamical core
下载PDF
Multi-head neural networks for simulating particle breakage dynamics
7
作者 Abhishek Gupta Barada Kanta Mishra 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期130-141,共12页
The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emer... The breakage of brittle particulate materials into smaller particles under compressive or impact loads can be modelled as an instantiation of the population balance integro-differential equation.In this paper,the emerging computational science paradigm of physics-informed neural networks is studied for the first time for solving both linear and nonlinear variants of the governing dynamics.Unlike conventional methods,the proposed neural network provides rapid simulations of arbitrarily high resolution in particle size,predicting values on arbitrarily fine grids without the need for model retraining.The network is assigned a simple multi-head architecture tailored to uphold monotonicity of the modelled cumulative distribution function over particle sizes.The method is theoretically analyzed and validated against analytical results before being applied to real-world data of a batch grinding mill.The agreement between laboratory data and numerical simulation encourages the use of physics-informed neural nets for optimal planning and control of industrial comminution processes. 展开更多
关键词 Particle breakage dynamics Population balance equation Physics-informed neural networks
下载PDF
Set-Membership Filtering Approach to Dynamic Event-Triggered Fault Estimation for a Class of Nonlinear Time-Varying Complex Networks
8
作者 Xiaoting Du Lei Zou Maiying Zhong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期638-648,共11页
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ... The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator. 展开更多
关键词 dynamic event-triggered mechanism(DETM) fault estimation nonlinear time-varying complex networks set-member-ship filtering unknown input observer
下载PDF
Adaptive Impulsive Outer Synchronization Between Drive-Response Dynamical Networks 被引量:1
9
作者 吴召艳 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第5期590-594,共5页
In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the ... In this paper, outer synchronization between drive-response dynamical networks is investigated. Impulsive control combining with adaptive strategy is adopted to design controllers for achieving the goal. Based on the Lyapunov function method and mathematical analysis technique, a synchronization criterion with respect to the impulsive gains and intervals is analytically derived. From the criterion, the impulsive gains can adjust themselves to proper values when the impulsive intervals and some constants are fixed, and vice versa. Finally, two numerical examples are provided to verify the effectiveness of the derived result. 展开更多
关键词 Jouter synchronization dynamical network impulsive control
原文传递
Image super‐resolution via dynamic network 被引量:1
10
作者 Chunwei Tian Xuanyu Zhang +2 位作者 Qi Zhang Mingming Yang Zhaojie Ju 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期837-849,共13页
Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely exp... Convolutional neural networks depend on deep network architectures to extract accurate information for image super‐resolution.However,obtained information of these con-volutional neural networks cannot completely express predicted high‐quality images for complex scenes.A dynamic network for image super‐resolution(DSRNet)is presented,which contains a residual enhancement block,wide enhancement block,feature refine-ment block and construction block.The residual enhancement block is composed of a residual enhanced architecture to facilitate hierarchical features for image super‐resolution.To enhance robustness of obtained super‐resolution model for complex scenes,a wide enhancement block achieves a dynamic architecture to learn more robust information to enhance applicability of an obtained super‐resolution model for varying scenes.To prevent interference of components in a wide enhancement block,a refine-ment block utilises a stacked architecture to accurately learn obtained features.Also,a residual learning operation is embedded in the refinement block to prevent long‐term dependency problem.Finally,a construction block is responsible for reconstructing high‐quality images.Designed heterogeneous architecture can not only facilitate richer structural information,but also be lightweight,which is suitable for mobile digital devices.Experimental results show that our method is more competitive in terms of performance,recovering time of image super‐resolution and complexity.The code of DSRNet can be obtained at https://github.com/hellloxiaotian/DSRNet. 展开更多
关键词 CNN dynamic network image super‐resolution lightweight network
下载PDF
Multi-scale physics-informed neural networks for solving high Reynolds number boundary layer flows based on matched asymptotic expansions 被引量:1
11
作者 Jianlin Huang Rundi Qiu +1 位作者 Jingzhu Wang Yiwei Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第2期76-81,共6页
Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at hig... Multi-scale system remains a classical scientific problem in fluid dynamics,biology,etc.In the present study,a scheme of multi-scale Physics-informed neural networks is proposed to solve the boundary layer flow at high Reynolds numbers without any data.The flow is divided into several regions with different scales based on Prandtl's boundary theory.Different regions are solved with governing equations in different scales.The method of matched asymptotic expansions is used to make the flow field continuously.A flow on a semi infinite flat plate at a high Reynolds number is considered a multi-scale problem because the boundary layer scale is much smaller than the outer flow scale.The results are compared with the reference numerical solutions,which show that the msPINNs can solve the multi-scale problem of the boundary layer in high Reynolds number flows.This scheme can be developed for more multi-scale problems in the future. 展开更多
关键词 Physics-informed neural networks(PINNs) MULTI-SCALE Fluid dynamics Boundary layer
下载PDF
Dynamic Modeling of Robotic Manipulator via an Augmented Deep Lagrangian Network
12
作者 Shuangshuang Wu Zhiming Li +1 位作者 Wenbai Chen Fuchun Sun 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第5期1604-1614,共11页
Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus.Recent physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian ne... Learning the accurate dynamics of robotic systems directly from the trajectory data is currently a prominent research focus.Recent physics-enforced networks,exemplified by Hamiltonian neural networks and Lagrangian neural networks,demonstrate proficiency in modeling ideal physical systems,but face limitations when applied to systems with uncertain non-conservative dynamics due to the inherent constraints of the conservation laws foundation.In this paper,we present a novel augmented deep Lagrangian network,which seamlessly integrates a deep Lagrangian network with a standard deep network.This fusion aims to effectively model uncertainties that surpass the limitations of conventional Lagrangian mechanics.The proposed network is applied to learn inverse dynamics model of two multi-degree manipulators including a 6-dof UR-5 robot and a 7-dof SARCOS manipulator under uncertainties.The experimental results clearly demonstrate that our approach exhibits superior modeling precision and enhanced physical credibility. 展开更多
关键词 deep Lagrangian network nonconservative dynamics multi-degree manipulator inverse dynamic modeling
原文传递
The Effect of Key Nodes on theMalware Dynamics in the Industrial Control Network
13
作者 Qiang Fu JunWang +1 位作者 Changfu Si Jiawei Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期329-349,共21页
As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is be... As industrialization and informatization becomemore deeply intertwined,industrial control networks have entered an era of intelligence.The connection between industrial control networks and the external internet is becoming increasingly close,which leads to frequent security accidents.This paper proposes a model for the industrial control network.It includes a malware containment strategy that integrates intrusion detection,quarantine,and monitoring.Basedonthismodel,the role of keynodes in the spreadofmalware is studied,a comparisonexperiment is conducted to validate the impact of the containment strategy.In addition,the dynamic behavior of the model is analyzed,the basic reproduction number is computed,and the disease-free and endemic equilibrium of the model is also obtained by the basic reproduction number.Moreover,through simulation experiments,the effectiveness of the containment strategy is validated,the influence of the relevant parameters is analyzed,and the containment strategy is optimized.In otherwords,selective immunity to key nodes can effectively suppress the spread ofmalware andmaintain the stability of industrial control systems.The earlier the immunization of key nodes,the better.Once the time exceeds the threshold,immunizing key nodes is almost ineffective.The analysis provides a better way to contain the malware in the industrial control network. 展开更多
关键词 Key nodes dynamic model industrial control network SIMULATION
下载PDF
MTCR-CR Routing Strategy for Connection-Oriented Routing over Satellite Networks
14
作者 Li Changhao Sun Xue +1 位作者 Yan Lei Cao Suzhi 《China Communications》 SCIE CSCD 2024年第5期280-296,共17页
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o... The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation. 展开更多
关键词 ISL routing stability satellite networks satellite routing dynamic strategy
下载PDF
Dynamic adaptive spatio-temporal graph network for COVID-19 forecasting
15
作者 Xiaojun Pu Jiaqi Zhu +3 位作者 Yunkun Wu Chang Leng Zitong Bo Hongan Wang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第3期769-786,共18页
Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning mode... Appropriately characterising the mixed space-time relations of the contagion process caused by hybrid space and time factors remains the primary challenge in COVID-19 forecasting.However,in previous deep learning models for epidemic forecasting,spatial and temporal variations are captured separately.A unified model is developed to cover all spatio-temporal relations.However,this measure is insufficient for modelling the complex spatio-temporal relations of infectious disease transmission.A dynamic adaptive spatio-temporal graph network(DASTGN)is proposed based on attention mechanisms to improve prediction accuracy.In DASTGN,complex spatio-temporal relations are depicted by adaptively fusing the mixed space-time effects and dynamic space-time dependency structure.This dual-scale model considers the time-specific,space-specific,and direct effects of the propagation process at the fine-grained level.Furthermore,the model characterises impacts from various space-time neighbour blocks under time-varying interventions at the coarse-grained level.The performance comparisons on the three COVID-19 datasets reveal that DASTGN achieves state-of-the-art results with a maximum improvement of 17.092%in the root mean-square error and 11.563%in the mean absolute error.Experimental results indicate that the mechanisms of designing DASTGN can effectively detect some spreading characteristics of COVID-19.The spatio-temporal weight matrices learned in each proposed module reveal diffusion patterns in various scenarios.In conclusion,DASTGN has successfully captured the dynamic spatio-temporal variations of COVID-19,and considering multiple dynamic space-time relationships is essential in epidemic forecasting. 展开更多
关键词 ADAPTIVE COVID-19 forecasting dynamic INTERVENTION spatio-temporal graph neural networks
下载PDF
Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
16
作者 邵晓光 张捷 鲁延娟 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期126-135,共10页
This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmi... This paper addresses the issue of nonfragile state estimation for memristive recurrent neural networks with proportional delay and sensor saturations. In practical engineering, numerous unnecessary signals are transmitted to the estimator through the networks, which increases the burden of communication bandwidth. A dynamic event-triggered mechanism,instead of a static event-triggered mechanism, is employed to select useful data. By constructing a meaningful Lyapunov–Krasovskii functional, a delay-dependent criterion is derived in terms of linear matrix inequalities for ensuring the global asymptotic stability of the augmented system. In the end, two numerical simulations are employed to illustrate the feasibility and validity of the proposed theoretical results. 展开更多
关键词 memristor-based neural networks proportional delays dynamic event-triggered mechanism sensor saturations
下载PDF
Dynamic interwell connectivity analysis of multi-layer waterflooding reservoirs based on an improved graph neural network
17
作者 Zhao-Qin Huang Zhao-Xu Wang +4 位作者 Hui-Fang Hu Shi-Ming Zhang Yong-Xing Liang Qi Guo Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1062-1080,共19页
The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oi... The analysis of interwell connectivity plays an important role in the formulation of oilfield development plans and the description of residual oil distribution. In fact, sandstone reservoirs in China's onshore oilfields generally have the characteristics of thin and many layers, so multi-layer joint production is usually adopted. It remains a challenge to ensure the accuracy of splitting and dynamic connectivity in each layer of the injection-production wells with limited field data. The three-dimensional well pattern of multi-layer reservoir and the relationship between injection-production wells can be equivalent to a directional heterogeneous graph. In this paper, an improved graph neural network is proposed to construct an interacting process mimics the real interwell flow regularity. In detail, this method is used to split injection and production rates by combining permeability, porosity and effective thickness, and to invert the dynamic connectivity in each layer of the injection-production wells by attention mechanism.Based on the material balance and physical information, the overall connectivity from the injection wells,through the water injection layers to the production layers and the output of final production wells is established. Meanwhile, the change of well pattern caused by perforation, plugging and switching of wells at different times is achieved by updated graph structure in spatial and temporal ways. The effectiveness of the method is verified by a combination of reservoir numerical simulation examples and field example. The method corresponds to the actual situation of the reservoir, has wide adaptability and low cost, has good practical value, and provides a reference for adjusting the injection-production relationship of the reservoir and the development of the remaining oil. 展开更多
关键词 Graph neural network dynamic interwell connectivity Production-injection splitting Attention mechanism Multi-layer reservoir
下载PDF
Resource Allocation in Multi-User Cellular Networks:A Transformer-Based Deep Reinforcement Learning Approach
18
作者 Zhao Di Zheng Zhong +2 位作者 Qin Pengfei Qin Hao Song Bin 《China Communications》 SCIE CSCD 2024年第5期77-96,共20页
To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlin... To meet the communication services with diverse requirements,dynamic resource allocation has shown increasing importance.In this paper,we consider the multi-slot and multi-user resource allocation(MSMU-RA)in a downlink cellular scenario with the aim of maximizing system spectral efficiency while guaranteeing user fairness.We first model the MSMURA problem as a dual-sequence decision-making process,and then solve it by a novel Transformerbased deep reinforcement learning(TDRL)approach.Specifically,the proposed TDRL approach can be achieved based on two aspects:1)To adapt to the dynamic wireless environment,the proximal policy optimization(PPO)algorithm is used to optimize the multi-slot RA strategy.2)To avoid co-channel interference,the Transformer-based PPO algorithm is presented to obtain the optimal multi-user RA scheme by exploring the mapping between user sequence and resource sequence.Experimental results show that:i)the proposed approach outperforms both the traditional and DRL methods in spectral efficiency and user fairness,ii)the proposed algorithm is superior to DRL approaches in terms of convergence speed and generalization performance. 展开更多
关键词 dynamic resource allocation multi-user cellular network spectrum efficiency user fairness
下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:4
19
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring Moment tensor dynamic Bayesian network(DBN) Rockburst warning Shuangjiangkou hydropower station
下载PDF
Joint User Association and Satellite Selection for Satellite-Terrestrial Integrated networks
20
作者 Qiu Wenjing Liu Aijun Han Chen 《China Communications》 SCIE CSCD 2024年第10期240-255,共16页
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ... In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul. 展开更多
关键词 dynamic backhaul links interference management satellite selection satellite-terrestrial integrated networks user association
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部