This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. T...This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO(Wind Driven Optimization) algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-Ⅲ mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation.展开更多
基金Supported by National Basic Research Program of China(973 Program)(2013CB035500) National Natural Science Foundation of China(61233004,61221003,61074061)+1 种基金 International Cooperation Program of Shanghai Science and Technology Commission (12230709600) the Higher Education Research Fund for the Doctoral Program of China(20120073130006)
文摘This article introduces a singleton type-1 fuzzy logic system(T1-SFLS) controller and Fuzzy-WDO hybrid for the autonomous mobile robot navigation and collision avoidance in an unknown static and dynamic environment. The WDO(Wind Driven Optimization) algorithm is used to optimize and tune the input/output membership function parameters of the fuzzy controller. The WDO algorithm is working based on the atmospheric motion of infinitesimal small air parcels navigates over an N-dimensional search domain. The performance of this proposed technique has compared through many computer simulations and real-time experiments by using Khepera-Ⅲ mobile robot. As compared to the T1-SFLS controller the Fuzzy-WDO algorithm is found good agreement for mobile robot navigation.