To date,there are very few studies on the transition beyond second Hopf bifurcation in a lid-driven square cavity,due to the difficulties in theoretical analysis and numerical simulations.In this paper,we study the ch...To date,there are very few studies on the transition beyond second Hopf bifurcation in a lid-driven square cavity,due to the difficulties in theoretical analysis and numerical simulations.In this paper,we study the characteristics of the third Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme rectently developed by us.We numerically identify the critical Reynolds number of the third Hopf bifurcation located in the interval of(13944.7021,13946.5333)by the method of bisection.Through Fourier analysis,it is discovered that the flow becomes chaotic with a characteristic of period-doubling bifurcation when the Reynolds number is beyond the third bifurcation critical interval.Nonlinear time series analysis further ascertains the flow chaotic behaviors via the phase diagram,Kolmogorov entropy and maximal Lyapunov exponent.The phase diagram changes interestingly from a closed curve with self-intersection to an unclosed curve and the attractor eventually becomes strange when the flow becomes chaotic.展开更多
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improv...By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.展开更多
To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of...To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of theoretical analyses and numerical simulations. In this paper, we study the characteristics of the second Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme recently developed by us. We numerically identify the critical Reynolds number of the second Hopf bifurcation located in the interval of(11093.75, 11094.3604) by bisection. In addition, we find that there are two dominant frequencies in its spectral diagram when the flow is in the status of the second Hopf bifurcation, while only one dominant frequency is identified if the flow is in the first Hopf bifurcation via the Fourier analysis. More interestingly, the flow phase portrait of velocity components is found to make transition from a regular elliptical closed form for the first Hopf bifurcation to a non-elliptical closed form with self-intersection for the second Hopf bifurcation. Such characteristics disclose flow in a quasi-periodic state when the second Hopf bifurcation occurs.展开更多
A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for-...A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for- mulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pres- sure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to Re = 27500, and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.展开更多
In this present work, we study heat transfer in a confined environment. We have to determine the thermal and dynamics fields of the cavity while observing the effect of the Rayleigh number which depends on the charact...In this present work, we study heat transfer in a confined environment. We have to determine the thermal and dynamics fields of the cavity while observing the effect of the Rayleigh number which depends on the characteristics of the fluid and the temperatures imposed. The behavior of boundary layers in natural convection is analyzed along this square cavity. The central halves of its vertical walls are heated at different temperatures. The left active part is at a higher temperature than the one on the right wall. The remaining inactive parts and the horizontal walls (upper and lower) are adiabatic. The thermal and dynamic modeling of two-dimensional problem was done using a calculation code Fortran 90 and a visualization software ParaView based on the finite volume method. The equations governing this phenomenon of unsteady flow have thus been solved. This allows the modeling of both air flow and heat transfer with a numerical stabilization of the solution. So, we have presented our results of numerical simulations using a visualization tool. The results show the different velocity and temperature curves, velocity vectors and isotherms in laminar flow regime.展开更多
Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber ...Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber of 0.71 throughout the simulation. The left and right walls of the hex-agonal cavity are kept thermally insulated and the lid moves top to bottom at a constant speed U0. The top left and right walls of the enclosure are maintained at cold temperature Tc. The bottom right wall is considered with a corner heater whereas the bottom remaining part is adiabatic and inside the cavity a square shape heated block Th. The focus of the work is to investigate the effect of Hartmann number, Richardson number, Grashof number and Reynolds number on the fluid flow and heat transfer characteristics inside the enclosure. A set of graphical results is presented in terms of streamlines, isotherms, local Nusselt number, velocity profiles, temperature profiles and average Nusselt numbers. The results reveal that heat transfer rate increases with increasing Richardson number and Hartmann number. It is also observed that, Hartmann number is a good control parameter for heat transfer in fluid flow in hexagonal cavity.展开更多
Multiple steady solutions and hysteresis phenomenon in the square cavity flows driven by the surface with antisymmetric velocity profile are investigated by numerical simulation and bifurcation analysis.A high order s...Multiple steady solutions and hysteresis phenomenon in the square cavity flows driven by the surface with antisymmetric velocity profile are investigated by numerical simulation and bifurcation analysis.A high order spectral element method with the matrix-free pseudo-arclength technique is used for the steady-state solution and numerical continuation.The complex flow patterns beyond the symmetry-breaking at Re≈320 are presented by a bifurcation diagram for Re<2500.The results of stable symmetric and asymmetric solutions are consistent with those reported in literature,and a new unstable asymmetric branch is obtained besides the stable branches.A novel hysteresis phenomenon is observed in the range of 2208<Re<2262,where two pairs of stable and two pairs of unstable asymmetric steady solutions beyond the stable symmetric state coexist.The vortices near the sidewall appear when the Reynolds number increases,which correspond to the bifurcation of topology structure,but not the bifurcation of Navier-Stokes equations.The hysteresis is proposed to be the result of the combined mechanisms of the competition and coalescence of secondary vortices.展开更多
Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or inte...Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem.展开更多
This paper investigates the chaotic lid-driven square cavity flows at extreme Reynolds numbers.Several observations have been made from this study.Firstly,at extreme Reynolds numbers two principles add at the genesis ...This paper investigates the chaotic lid-driven square cavity flows at extreme Reynolds numbers.Several observations have been made from this study.Firstly,at extreme Reynolds numbers two principles add at the genesis of tiny,loose counterclockwise-or clockwise-rotating eddies.One concerns the arousing of them owing to the influence of the clockwise-or counterclockwise currents nearby;the other,the arousing of counterclockwise-rotating eddies near attached to the moving(lid)top wall which moves from left to right.Secondly,unexpectedly,the kinetic energy soon reaches the qualitative temporal limit’s pace,fluctuating briskly,randomly inside the total kinetic energy range,fluctuations which concentrate on two distinct fragments:one on its upper side,the upper fragment,the other on its lower side,the lower fragment,switching briskly,randomly from each other;and further on many small fragments arousing randomly within both,switching briskly,randomly from one another.As the Reynolds number Re→∞,both distance and then close,and the kinetic energy fluctuates shorter and shorter at the upper fragment and longer and longer at the lower fragment,displaying tall high spikes which enlarge and then disappear.As the time t→∞(at the Reynolds number Re fixed)they recur from time to time with roughly the same amplitude.For the most part,at the upper fragment the leading eddy rotates clockwise,and at the lower fragment,in stark contrast,it rotates counterclockwise.At Re=109 the leading eddy-at its qualitative temporal limit’s pace—appears to rotate solely counterclockwise.展开更多
Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. ...Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.展开更多
A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are sOlved in primitive variables. The nonlinear convection terms in the ...A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are sOlved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re≤5000, the results agree well with those in literature. When Re=7500 and Re=10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.展开更多
In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split i...In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.展开更多
Numerical simulation of the bifurcation of Bingham fluid streamline topologies in rectangular double-lid-driven cavity, with varying aspect (height to width) ratio A, is presented. The lids on the top and bottom move ...Numerical simulation of the bifurcation of Bingham fluid streamline topologies in rectangular double-lid-driven cavity, with varying aspect (height to width) ratio A, is presented. The lids on the top and bottom move at the same speed but in opposite directions so that symmetric flow patterns are generated. Similar to the Newtonian case, bifurcations occur as the aspect ratio decreases. Special to Bingham fluids, the non-Newtonian indicator, Bingham number B, also governs the bifurcation besides the bifurcation parameter A.展开更多
In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds...In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds number fluid flow applications, a subgrid turbulence model for LBM was introduced based on standard Smagorinsky subgrid model and Lattice Bhatnagar-Gross-Krook (LBGK) model. The subgrid LBGK model was subsequently used to simulate the two-dimensional driven cavity flow at high Reynolds numbers. The simulation results including distribution of stream lines, dimensionless velocities distribution, values of stream function, as well as location of vertex center, were compared with benchmark solutions, with satisfactory agreements.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.12162001)the Natural Science Foundation of Ningxia(Grant No.2019AAC03129)the Construction Project of First-Class Disciplines in Ningxia Higher Education(Grant No.NXYLXK2017B09)。
文摘To date,there are very few studies on the transition beyond second Hopf bifurcation in a lid-driven square cavity,due to the difficulties in theoretical analysis and numerical simulations.In this paper,we study the characteristics of the third Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme rectently developed by us.We numerically identify the critical Reynolds number of the third Hopf bifurcation located in the interval of(13944.7021,13946.5333)by the method of bisection.Through Fourier analysis,it is discovered that the flow becomes chaotic with a characteristic of period-doubling bifurcation when the Reynolds number is beyond the third bifurcation critical interval.Nonlinear time series analysis further ascertains the flow chaotic behaviors via the phase diagram,Kolmogorov entropy and maximal Lyapunov exponent.The phase diagram changes interestingly from a closed curve with self-intersection to an unclosed curve and the attractor eventually becomes strange when the flow becomes chaotic.
基金Project supported by the National Natural Science Foundation of China (Grant No 70271069).
文摘By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50 000 in the literature; however, this paper can readily extend the maximum to 1000 000 with the above combination.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11601013 and 91530325)。
文摘To date, there are very few studies on the second Hopf bifurcation in a driven square cavity, although there are intensive investigations focused on the first Hopf bifurcation in literature, due to the difficulties of theoretical analyses and numerical simulations. In this paper, we study the characteristics of the second Hopf bifurcation in a driven square cavity by applying a consistent fourth-order compact finite difference scheme recently developed by us. We numerically identify the critical Reynolds number of the second Hopf bifurcation located in the interval of(11093.75, 11094.3604) by bisection. In addition, we find that there are two dominant frequencies in its spectral diagram when the flow is in the status of the second Hopf bifurcation, while only one dominant frequency is identified if the flow is in the first Hopf bifurcation via the Fourier analysis. More interestingly, the flow phase portrait of velocity components is found to make transition from a regular elliptical closed form for the first Hopf bifurcation to a non-elliptical closed form with self-intersection for the second Hopf bifurcation. Such characteristics disclose flow in a quasi-periodic state when the second Hopf bifurcation occurs.
基金the National Natural Science Foundation of China (Grants 41372301 and 51349011)the Preeminent Youth Talent Project of Southwest University of Science and Technology (Grant 13zx9109)
文摘A streamline upwind/Petrov-Galerkin (SUPG) finite element method based on a penalty function is pro- posed for steady incompressible Navier-Stokes equations. The SUPG stabilization technique is employed for the for- mulation of momentum equations. Using the penalty function method, the continuity equation is simplified and the pres- sure of the momentum equations is eliminated. The lid-driven cavity flow problem is solved using the present model. It is shown that steady flow simulations are computable up to Re = 27500, and the present results agree well with previous solutions. Tabulated results for the properties of the primary vortex are also provided for benchmarking purposes.
文摘In this present work, we study heat transfer in a confined environment. We have to determine the thermal and dynamics fields of the cavity while observing the effect of the Rayleigh number which depends on the characteristics of the fluid and the temperatures imposed. The behavior of boundary layers in natural convection is analyzed along this square cavity. The central halves of its vertical walls are heated at different temperatures. The left active part is at a higher temperature than the one on the right wall. The remaining inactive parts and the horizontal walls (upper and lower) are adiabatic. The thermal and dynamic modeling of two-dimensional problem was done using a calculation code Fortran 90 and a visualization software ParaView based on the finite volume method. The equations governing this phenomenon of unsteady flow have thus been solved. This allows the modeling of both air flow and heat transfer with a numerical stabilization of the solution. So, we have presented our results of numerical simulations using a visualization tool. The results show the different velocity and temperature curves, velocity vectors and isotherms in laminar flow regime.
文摘Hydrodynamic mixed convection in a lid-driven hexagonal cavity with corner heater is numerically simulated in this paper by employing finite element method. The working fluid is assigned as air with a Prandtl num-ber of 0.71 throughout the simulation. The left and right walls of the hex-agonal cavity are kept thermally insulated and the lid moves top to bottom at a constant speed U0. The top left and right walls of the enclosure are maintained at cold temperature Tc. The bottom right wall is considered with a corner heater whereas the bottom remaining part is adiabatic and inside the cavity a square shape heated block Th. The focus of the work is to investigate the effect of Hartmann number, Richardson number, Grashof number and Reynolds number on the fluid flow and heat transfer characteristics inside the enclosure. A set of graphical results is presented in terms of streamlines, isotherms, local Nusselt number, velocity profiles, temperature profiles and average Nusselt numbers. The results reveal that heat transfer rate increases with increasing Richardson number and Hartmann number. It is also observed that, Hartmann number is a good control parameter for heat transfer in fluid flow in hexagonal cavity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11902043 and 11772065)the Science Challenge Project(Grant No.TZ2016001).
文摘Multiple steady solutions and hysteresis phenomenon in the square cavity flows driven by the surface with antisymmetric velocity profile are investigated by numerical simulation and bifurcation analysis.A high order spectral element method with the matrix-free pseudo-arclength technique is used for the steady-state solution and numerical continuation.The complex flow patterns beyond the symmetry-breaking at Re≈320 are presented by a bifurcation diagram for Re<2500.The results of stable symmetric and asymmetric solutions are consistent with those reported in literature,and a new unstable asymmetric branch is obtained besides the stable branches.A novel hysteresis phenomenon is observed in the range of 2208<Re<2262,where two pairs of stable and two pairs of unstable asymmetric steady solutions beyond the stable symmetric state coexist.The vortices near the sidewall appear when the Reynolds number increases,which correspond to the bifurcation of topology structure,but not the bifurcation of Navier-Stokes equations.The hysteresis is proposed to be the result of the combined mechanisms of the competition and coalescence of secondary vortices.
基金Project supported by the Fundamental Research Funds for the Central Universities of China(No.DUT21RC(3)063)the National Natural Science Foundation of China(No.51720105007)the Baidu Foundation(No.ghfund202202014542)。
文摘Physics-informed neural networks(PINNs)are proved methods that are effective in solving some strongly nonlinear partial differential equations(PDEs),e.g.,Navier-Stokes equations,with a small amount of boundary or interior data.However,the feasibility of applying PINNs to the flow at moderate or high Reynolds numbers has rarely been reported.The present paper proposes an artificial viscosity(AV)-based PINN for solving the forward and inverse flow problems.Specifically,the AV used in PINNs is inspired by the entropy viscosity method developed in conventional computational fluid dynamics(CFD)to stabilize the simulation of flow at high Reynolds numbers.The newly developed PINN is used to solve the forward problem of the two-dimensional steady cavity flow at Re=1000 and the inverse problem derived from two-dimensional film boiling.The results show that the AV augmented PINN can solve both problems with good accuracy and substantially reduce the inference errors in the forward problem.
基金supported in part by the National Science Foundation Grants No.DMS-0906440 and No.DMS-1206438.
文摘This paper investigates the chaotic lid-driven square cavity flows at extreme Reynolds numbers.Several observations have been made from this study.Firstly,at extreme Reynolds numbers two principles add at the genesis of tiny,loose counterclockwise-or clockwise-rotating eddies.One concerns the arousing of them owing to the influence of the clockwise-or counterclockwise currents nearby;the other,the arousing of counterclockwise-rotating eddies near attached to the moving(lid)top wall which moves from left to right.Secondly,unexpectedly,the kinetic energy soon reaches the qualitative temporal limit’s pace,fluctuating briskly,randomly inside the total kinetic energy range,fluctuations which concentrate on two distinct fragments:one on its upper side,the upper fragment,the other on its lower side,the lower fragment,switching briskly,randomly from each other;and further on many small fragments arousing randomly within both,switching briskly,randomly from one another.As the Reynolds number Re→∞,both distance and then close,and the kinetic energy fluctuates shorter and shorter at the upper fragment and longer and longer at the lower fragment,displaying tall high spikes which enlarge and then disappear.As the time t→∞(at the Reynolds number Re fixed)they recur from time to time with roughly the same amplitude.For the most part,at the upper fragment the leading eddy rotates clockwise,and at the lower fragment,in stark contrast,it rotates counterclockwise.At Re=109 the leading eddy-at its qualitative temporal limit’s pace—appears to rotate solely counterclockwise.
基金supported by Department of Energy and Process Engineering,Norwegian University of Science and TechnologyInstitute for Energy Technology and SINTEF through the FACE(Multiphase Flow Assurance Innovation Center) Project
文摘Particle based methods can be used for both the simulations of solid and fluid phases in multiphase medium, such as the discrete-element method for solid phase and the smoothed particle hydrodynamics for fluid phase. This paper presents a computational method combining these two methods for solid-liquid medium. The two phases are coupled by using an improved model from a reported Lagrangian-Eulerian method. The technique is verified by simulating liquid-solid flows in a two-dimensional lid-driven cavity.
基金Project supported by the National Natural Science Foundation of China
文摘A high-order accurate finite-difference scheme, the upwind compact method, is proposed. The 2-D unsteady incompressible Navier-Stokes equations are sOlved in primitive variables. The nonlinear convection terms in the governing equations are approximated by using upwind biased compact difference, and other spatial derivative terms are discretized by using the fourth-order compact difference. The upwind compact method is used to solve the driven flow in a square cavity. Solutions are obtained for Reynolds numbers as high as 10000. When Re≤5000, the results agree well with those in literature. When Re=7500 and Re=10000, there is no convergence to a steady laminar solution, and the flow becomes unsteady and periodic.
基金financially supported by the National Natural Science Foundation of China(Grant No.51349011)the Foundation of Si’chuan Educational Committee(Grant No.17ZB0452)+1 种基金the Innovation Team Project of Si’chuan Educational Committee(Grant No.18TD0019)the Longshan Academic Talent Research Support Program of the Southwest of Science and Technology(Grant Nos.18LZX715 and 18LZX410)
文摘In order to solve unsteady incompressible Navier–Stokes(N–S) equations, a new stabilized finite element method,called the viscous-splitting least square FEM, is proposed. In the model, the N–S equations are split into diffusive and convective parts in each time step. The diffusive part is discretized by the backward difference method in time and discretized by the standard Galerkin method in space. The convective part is a first-order nonlinear equation.After the linearization of the nonlinear part by Newton’s method, the convective part is also discretized by the backward difference method in time and discretized by least square scheme in space. C0-type element can be used for interpolation of the velocity and pressure in the present model. Driven cavity flow and flow past a circular cylinder are conducted to validate the present model. Numerical results agree with previous numerical results, and the model has high accuracy and can be used to simulate problems with complex geometry.
文摘Numerical simulation of the bifurcation of Bingham fluid streamline topologies in rectangular double-lid-driven cavity, with varying aspect (height to width) ratio A, is presented. The lids on the top and bottom move at the same speed but in opposite directions so that symmetric flow patterns are generated. Similar to the Newtonian case, bifurcations occur as the aspect ratio decreases. Special to Bingham fluids, the non-Newtonian indicator, Bingham number B, also governs the bifurcation besides the bifurcation parameter A.
文摘In recent years, the Lattice Boltzmann Method (LBM) has developed into an alternative and promising numerical scheme for simulating fluid flows and modeling physics in fluids. In order to propose LBM for high Reynolds number fluid flow applications, a subgrid turbulence model for LBM was introduced based on standard Smagorinsky subgrid model and Lattice Bhatnagar-Gross-Krook (LBGK) model. The subgrid LBGK model was subsequently used to simulate the two-dimensional driven cavity flow at high Reynolds numbers. The simulation results including distribution of stream lines, dimensionless velocities distribution, values of stream function, as well as location of vertex center, were compared with benchmark solutions, with satisfactory agreements.