期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
未按规定导向车道行驶行为干预方法研究 被引量:4
1
作者 付川云 刘华 王陶钰 《安全与环境学报》 CAS CSCD 北大核心 2019年第3期874-880,共7页
为保障信号交叉口的正常交通秩序,充分遏制机动车未按规定导向车道行驶行为,亟需探究该行为的影响因素及干预方法。以北京市内4个信号交叉口处共35 h的1 666条监控视频数据为基础,对未按规定导向车道行驶行为进行定义并将其分为9类,分... 为保障信号交叉口的正常交通秩序,充分遏制机动车未按规定导向车道行驶行为,亟需探究该行为的影响因素及干预方法。以北京市内4个信号交叉口处共35 h的1 666条监控视频数据为基础,对未按规定导向车道行驶行为进行定义并将其分为9类,分别对频率较高的5类未按规定导向车道行驶行为构建二元Logit模型,以确定其关键影响因素,并据此提出干预方法。结果表明,排队车辆数、大车比例、时段、车流量、照明条件等因素会不同程度地影响5类未按规定导向车道行驶行为的发生概率,其中排队车辆数及时间因素影响最为显著。在此基础上,从交通工程设施及驾驶人安全意识角度,提出优化交叉口渠化设计及信号配时、采用智能标线、强化监管力度及完善交通管控设施、加强驾驶人安全教育4种未按规定导向车道行驶行为干预方法。 展开更多
关键词 安全工程 道路交通安全 未按规定导向车道行驶行为 二元Logit模型 交通违法 干预方法 智能标线
下载PDF
基于语义分割的车辆行驶车道定位方法
2
作者 裴晨皓 黄立勤 《福州大学学报(自然科学版)》 CAS 北大核心 2019年第4期453-459,共7页
提出一种基于语义分割的车辆行驶车道定位方法.首先采用“编码器-解码器”网络架构实现多车道语义分割,通过最大池化计算的池化索引来进行非线性上采样,消除上采样的学习需要;然后结合目标检测YOLO v2算法,判断行驶车辆所属车道的位置,... 提出一种基于语义分割的车辆行驶车道定位方法.首先采用“编码器-解码器”网络架构实现多车道语义分割,通过最大池化计算的池化索引来进行非线性上采样,消除上采样的学习需要;然后结合目标检测YOLO v2算法,判断行驶车辆所属车道的位置,从而进行车道定位.利用卡尔斯鲁厄理工学院和丰田美国技术研究院公布的数据集(KITTI)中城市道路(UM)的数据制作训练和测试数据库,并将其公开发布.该算法可以实现端到端训练,网络结构简单、速度快、内存需求低,每帧图像的执行速度在60 ms以内. 展开更多
关键词 车辆辅助驾驶 车道语义分割 卷积神经网络 车道定位
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部