Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking ca...Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.展开更多
The paper presents the digital image objects detection and recognition system using artificial neural networks and drones. It contains description based on the example of person identification system where face is the...The paper presents the digital image objects detection and recognition system using artificial neural networks and drones. It contains description based on the example of person identification system where face is the key of object processing. It describes the structure of this system and components of the learning sub-system as well as the processing sub-system (detection, recognition). It consists of the description and examples of learning and processing algorithms and applied technologies. The results of calculations of efficiency and speed of each algorithm are presented in the table and appropriate characteristics. The article also describes the possibilities of further system developments.展开更多
As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current s...As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current situation.Crash accidents or illegal airspace invading caused by these small drones affect public security negatively.To solve this security problem,we use the back-propagation neural network(BPNN),the support-vector machine(SVM),and the k-nearest neighbors(KNN)method to detect and classify the non-cooperative drones at the edge of the flight restriction zone based on the cepstrum of the radio frequency(RF)signal of the drone’s downlink.The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean environment.The detection and classification algorithm based on the cepstrum properties is conducted.Results of the outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with an average accuracy of around 90%.The mainstream downlink protocols of amateur drones can be classified effectively as well.展开更多
Recently, drones have found applicability in a variety of study fields, one of these being forestry, where an increasing interest is given to this segment of technology, especially due to the high-resolution data that...Recently, drones have found applicability in a variety of study fields, one of these being forestry, where an increasing interest is given to this segment of technology, especially due to the high-resolution data that can be collected flexibly in a short time and at a relatively low price. Also, drones have an important role in filling the gaps of common data collected using manned aircraft or satellite remote sensing, while having many advantages both in research and in various practical applications particularly in forestry as well as in land use in general. This paper aims to briefly describe the different approaches of applications of UAVs (Unmanned Aircraft Vehicles) in forestry, such as forest mapping, forest management planning, canopy height model creation or mapping forest gaps. These approaches have great potential in the near future applications and their quick implementation in a variety of situations is desirable for the sustainable management of forests.展开更多
The smart city comprises various interlinked elements which communicate data and offers urban life to citizen.Unmanned Aerial Vehicles(UAV)or drones were commonly employed in different application areas like agricultu...The smart city comprises various interlinked elements which communicate data and offers urban life to citizen.Unmanned Aerial Vehicles(UAV)or drones were commonly employed in different application areas like agriculture,logistics,and surveillance.For improving the drone flying safety and quality of services,a significant solution is for designing the Internet of Drones(IoD)where the drones are utilized to gather data and people communicate to the drones of a specific flying region using the mobile devices is for constructing the Internet-of-Drones,where the drones were utilized for collecting the data,and communicate with others.In addition,the SIRSS-CIoD technique derives a tuna swarm algorithm-based clustering(TSA-C)technique to choose cluster heads(CHs)and organize clusters in IoV networks.Besides,the SIRSS-CIoD technique involves the design of a biogeography-based optimization(BBO)technique to an optimum route selection(RS)process.The design of clustering and routing techniques for IoD networks in smart cities shows the novelty of the study.A wide range of experimental analyses is carried out and the comparative study highlighted the improved performance of the SIRSS-CIoD technique over the other approaches.展开更多
In order to achieve the specific goal of a smart grid,the concept of electricity Internet of Things(eloT)has been proposed to assist the monitoring and inspection of power transmission line state and optimize the asse...In order to achieve the specific goal of a smart grid,the concept of electricity Internet of Things(eloT)has been proposed to assist the monitoring and inspection of power transmission line state and optimize the asset utilization.The long power transmission line and the complex field operation environment urge the introduction of drones into the eloT for fast power transmission line inspection,data collection from sensors for further big data analysis,adaptive control of power line voltage,etc.Additionally,drones can also act as a central communication control or relay point to serve the data exchange among sensors,drones and power transmission line maintenance personnel in the scenario where the conventional mobile communication service is not available.However,the fast mobility of drones may affect the signal transmission and position estimation performance,which may further deteriorate the networking performance.In order to solve this problem,a mobility compensation method is proposed,which includes the steps of frequency offset estimation and relative velocity calculation.Through the Monte Carlo simulations,the proposed algorithm shows favorable gains compared with the conventional ones.展开更多
With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually ...With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.展开更多
Cellular network operators have problems to test their network without affecting their user experience. Testingnetwork performance in a loaded situation is a challenge for the network operator because network performa...Cellular network operators have problems to test their network without affecting their user experience. Testingnetwork performance in a loaded situation is a challenge for the network operator because network performance differswhen it has more load on the radio access part. Therefore, in this paper, deploying swarming drones is proposed to loadthe cellular network and scan/test the network performance more realistically. Besides, manual swarming dronenavigation is not efficient enough to detect problematic regions. Hence, particle swarm optimization is proposed to bedeployed on swarming drone to find the regions where there are performance issues. Swarming drone communicationshelps to deploy the particle swarm optimization (PSO) method on them. Loading and testing swarm separation help tohave almost non-stochastic received signal level as an objective function. Moreover, there are some situations that morethan one network parameter should be used to find a problematic region in the cellular network. It is also proposed toapply multi-objective PSO to find more multi-parameter network optimization at the same time.展开更多
The recent technological developments have revolutionized the functioning of Wireless Sensor Network(WSN)-based industries with the development of Internet of Things(IoT).Internet of Drones(IoD)is a division under IoT...The recent technological developments have revolutionized the functioning of Wireless Sensor Network(WSN)-based industries with the development of Internet of Things(IoT).Internet of Drones(IoD)is a division under IoT and is utilized for communication amongst drones.While drones are naturally mobile,it undergoes frequent topological changes.Such alterations in the topology cause route election,stability,and scalability problems in IoD.Encryption is considered as an effective method to transmit the images in IoD environment.The current study introduces an Atom Search Optimization basedClusteringwith Encryption Technique for Secure Internet of Drones(ASOCE-SIoD)environment.The key objective of the presented ASOCE-SIoD technique is to group the drones into clusters and encrypt the images captured by drones.The presented ASOCE-SIoD technique follows ASO-based Cluster Head(CH)and cluster construction technique.In addition,signcryption technique is also applied to effectually encrypt the images captured by drones in IoD environment.This process enables the secure transmission of images to the ground station.In order to validate the efficiency of the proposed ASOCE-SIoD technique,several experimental analyses were conducted and the outcomes were inspected under different aspects.The comprehensive comparative analysis results established the superiority of the proposed ASOCE-SIoD model over recent approaches.展开更多
The Internet of Drones(IoD)offers synchronized access to organized airspace for Unmanned Aerial Vehicles(known as drones).The availability of inexpensive sensors,processors,and wireless communication makes it possible...The Internet of Drones(IoD)offers synchronized access to organized airspace for Unmanned Aerial Vehicles(known as drones).The availability of inexpensive sensors,processors,and wireless communication makes it possible in real time applications.As several applications comprise IoD in real time environment,significant interest has been received by research communications.Since IoD operates in wireless environment,it is needed to design effective intrusion detection system(IDS)to resolve security issues in the IoD environment.This article introduces ametaheuristics feature selection with optimal stacked autoencoder based intrusion detection(MFSOSAEID)in the IoD environment.The major intention of the MFSOSAE-ID technique is to identify the occurrence of intrusions in the IoD environment.To do so,the proposed MFSOSAE-ID technique firstly pre-processes the input data into a compatible format.In addition,the presented MFSOSAEID technique designs a moth flame optimization based feature selection(MFOFS)technique to elect appropriate features.Moreover,firefly algorithm(FFA)with stacked autoencoder(SAE)model is employed for the recognition and classification of intrusions in which the SAE parameters are optimally tuned with utilize of FFA.The performance validation of the MFSOSAE-ID model was tested utilizing benchmark dataset and the outcomes implied the promising performance of the MFSOSAE-ID model over other techniques with maximum accuracy of 99.72%.展开更多
Following the successful Swiss Innovation Week(SIW)held in July 2018,the Embassy of Switzerland in China launches its 2nd edition from 12 to 14of June 2019.With Swiss drones as the brand-new theme,Switzerland’s drone...Following the successful Swiss Innovation Week(SIW)held in July 2018,the Embassy of Switzerland in China launches its 2nd edition from 12 to 14of June 2019.With Swiss drones as the brand-new theme,Switzerland’s drone ecosystem and innovation in the field of flying robots were present.According to various rankings,Switzerland is one of the most innovative countrie s in the world and also one of the most competitive co untries.展开更多
Drones are proving out as a valuable tool and growing quickly in the world of technological advances.The applications of these vehicles are spreading widely in the areas of remote sensing,real time monitoring,goods de...Drones are proving out as a valuable tool and growing quickly in the world of technological advances.The applications of these vehicles are spreading widely in the areas of remote sensing,real time monitoring,goods delivery,security,defense,surveillance,infrastructure inspection.Although,the intent behind creating this tool was remote sensing.Smart drones will be the next big innovation and modification,which would have much wider applications especially in the field of infrastructure where it can reduce risks and lower costs.Current direct evaluation techniques are tedious,and the information caught is frequently not led in a precise manner with the areas tested not being geographically correct and the resulting reports being delivered past the point of no return.These were the reasons,which have increased the demand and usage of unmanned vehicles.In this research paper,we present critical review of main advancements of Drones in the area of transportation and agriculture.We present all the research related to civil applications in those areas and challenges including traffic monitoring,Bridge condition assessment,Roadway asset detection and many other applications related to infrastructure inspection enhancement.The paper also contributes with a discussion on the opportunities,which are opened,and the challenges that need to be addressed.Findings from the case studies,it is reported that around 25%of the bridges in united states are deficient and need continuous monitoring for enhancements to prevent any hazard.Unmanned vehicles could be a great help in monitoring these bridges and other important components of transportation,which can efficiently minimize the cost as well as the time spent on inspection for each of this component,as manual inspection requires labor and time which would be subsequently reduced by incorporating the usage of drones in the area of transportation.展开更多
The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader th...The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.展开更多
In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial dat...In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial data,alongside collecting data from distributed sensors supplemented by location data.The interception of the data sent from the drone to the station can lead to substantial threats.To address this issue,highly confidential protection methods must be employed.This paper introduces a novel steganography approach called the Shuffling Steganography Approach(SSA).SSA encompasses five fundamental stages and three proposed algorithms,designed to enhance security through strategic encryption and data hiding techniques.Notably,this method introduces advanced resistance to brute force attacks by employing predefined patterns across a wide array of images,complicating unauthorized access.The initial stage involves encryption,dividing,and disassembling the encrypted data.A small portion of the encrypted data is concealed within the text(Algorithm 1)in the third stage.Subsequently,the parts are merged and mixed(Algorithm 2),and finally,the composed text is hidden within an image(Algorithm 3).Through meticulous investigation and comparative analysis with existing methodologies,the proposed approach demonstrates superiority across various pertinent criteria,including robustness,secret message size capacity,resistance to multiple attacks,and multilingual support.展开更多
Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for ...Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.展开更多
Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to pred...Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.展开更多
This article presents a pragmatic quadcopter development template for parcel delivery in Nigeria. The quadcopter is equipped with a camera, parcel pouch and wireless telecommunication to capture live events and send t...This article presents a pragmatic quadcopter development template for parcel delivery in Nigeria. The quadcopter is equipped with a camera, parcel pouch and wireless telecommunication to capture live events and send them back to the control station for real-time delivery feedback. The study also discusses the design methodology adopted as a conceptual design approach vital to product development, it encompasses information gathering and identifying the problem, creating the solutions systematically and eventually evaluating and developing a concept for the drone and its attributes and presenting clear results for design calculations.展开更多
The use of drones in construction engineering has gained increasing attention in recent years due to its potential to revolutionize the industry. Drones, offer the ability to capture high-resolution aerial imagery and...The use of drones in construction engineering has gained increasing attention in recent years due to its potential to revolutionize the industry. Drones, offer the ability to capture high-resolution aerial imagery and collect data that was previously difficult or impossible to obtain. The integration drones in construction engineering presents opportunities for accurate data collection, analysis and visualization, which can improve decision-making processes and improve project outcomes. For example, drones equipped with GIS technology can be used to capture high-resolution aerial images of construction sites, allowing engineers to monitor progress, identify potential issues, and make informed adjustments as needed. By harnessing drones, civil engineers in the civil engineering field can potentially optimize project planning, design and execution while minimizing risks and costs. The work of this topic examines the case of the use of Drones combined with GIS in construction engineering. During this study, aerial photography of a certain segment of the Pristina-Gjilan Highway was taken. The results generated by the processing of aerial photos have been compared with the project. However, further research is needed to fully understand the capabilities and limitations of these technologies in this specific context, as well as to explore any potential challenges and barriers to their widespread adoption.展开更多
The ability to hit a target with precision and from a great distance has been reserved for the world’s superpowers. However, this resource is increasingly being threatened as drones with this long-range and precision...The ability to hit a target with precision and from a great distance has been reserved for the world’s superpowers. However, this resource is increasingly being threatened as drones with this long-range and precision capability are becoming more accessible to those who don’t have this strategic ability. This article starts with an analysis of the Iranian HESA Shahed 136 drone to discuss the latest innovations in low-cost long-range precision weapons, specifically the use of kamikaze drones and loitering munitions. This is an exploratory study that starts by discussing the notion of a kamikaze drone and then analyses the design options for the Shahed 136, to reflect on the future of this new type of weapon and its implications for the economic and political relationship between weapon and cost. The conclusion is that the HESA Shahed 136 revolutionizes the concept of precise long-range strikes, a function that until now was reserved for expensive and technologically demanding tactical missiles and aircraft, and which can now be carried out with cheap drones. This creates an arms race not only in producing the most technological and precise weaponry but also the least expensive.展开更多
基金supported in part by Interbit Research and in part by the European Union under(Grant No.2021-1-EL01-KA220-VET-000028082).
文摘Protection of urban critical infrastructures(CIs)from GPS-denied,bomb-carrying kamikaze drones(G-BKDs)is very challenging.Previous approaches based on drone jamming,spoofing,communication interruption and hijacking cannot be applied in the case under examination,since G-B-KDs are uncontrolled.On the other hand,drone capturing schemes and electromagnetic pulse(EMP)weapons seem to be effective.However,again,existing approaches present various limitations,while most of them do not examine the case of G-B-KDs.This paper,focuses on the aforementioned under-researched field,where the G-B-KD is confronted by two defensive drones.The first neutralizes and captures the kamikaze drone,while the second captures the bomb.Both defensive drones are equipped with a net-gun and an innovative algorithm,which,among others,estimates the locations of interception,using a real-world trajectory model.Additionally,one of the defensive drones is also equipped with an EMP weapon to damage the electronics equipment of the kamikaze drone and reduce the capturing time and the overall risk.Extensive simulated experiments and comparisons to state-of-art methods,reveal the advantages and limitations of the proposed approach.More specifically,compared to state-of-art,the proposed approach improves:(a)time to neutralize the target by at least 6.89%,(b)maximum number of missions by at least 1.27%and(c)total cost by at least 5.15%.
文摘The paper presents the digital image objects detection and recognition system using artificial neural networks and drones. It contains description based on the example of person identification system where face is the key of object processing. It describes the structure of this system and components of the learning sub-system as well as the processing sub-system (detection, recognition). It consists of the description and examples of learning and processing algorithms and applied technologies. The results of calculations of efficiency and speed of each algorithm are presented in the table and appropriate characteristics. The article also describes the possibilities of further system developments.
基金co-supported by the National Natural Science Foundation of China (Nos. U1933130,71731001,1433203,U1533119)the Research Project of Chinese Academy of Sciences (No. ZDRW-KT-2020-21-2)。
文摘As a prospective component of the future air transportation system,unmanned aerial vehicles(UAVs)have attracted enormous interest in both academia and industry.However,small UAVs are barely supervised in the current situation.Crash accidents or illegal airspace invading caused by these small drones affect public security negatively.To solve this security problem,we use the back-propagation neural network(BPNN),the support-vector machine(SVM),and the k-nearest neighbors(KNN)method to detect and classify the non-cooperative drones at the edge of the flight restriction zone based on the cepstrum of the radio frequency(RF)signal of the drone’s downlink.The signal from five various amateur drones and ambient wireless devices are sampled in an electromagnetic clean environment.The detection and classification algorithm based on the cepstrum properties is conducted.Results of the outdoor experiments suggest the proposed workflow and methods are sufficient to detect non-cooperative drones with an average accuracy of around 90%.The mainstream downlink protocols of amateur drones can be classified effectively as well.
文摘Recently, drones have found applicability in a variety of study fields, one of these being forestry, where an increasing interest is given to this segment of technology, especially due to the high-resolution data that can be collected flexibly in a short time and at a relatively low price. Also, drones have an important role in filling the gaps of common data collected using manned aircraft or satellite remote sensing, while having many advantages both in research and in various practical applications particularly in forestry as well as in land use in general. This paper aims to briefly describe the different approaches of applications of UAVs (Unmanned Aircraft Vehicles) in forestry, such as forest mapping, forest management planning, canopy height model creation or mapping forest gaps. These approaches have great potential in the near future applications and their quick implementation in a variety of situations is desirable for the sustainable management of forests.
基金This project was supported financially by Institution Fund projects under Grant No.(IFPIP-1266-611-1442).
文摘The smart city comprises various interlinked elements which communicate data and offers urban life to citizen.Unmanned Aerial Vehicles(UAV)or drones were commonly employed in different application areas like agriculture,logistics,and surveillance.For improving the drone flying safety and quality of services,a significant solution is for designing the Internet of Drones(IoD)where the drones are utilized to gather data and people communicate to the drones of a specific flying region using the mobile devices is for constructing the Internet-of-Drones,where the drones were utilized for collecting the data,and communicate with others.In addition,the SIRSS-CIoD technique derives a tuna swarm algorithm-based clustering(TSA-C)technique to choose cluster heads(CHs)and organize clusters in IoV networks.Besides,the SIRSS-CIoD technique involves the design of a biogeography-based optimization(BBO)technique to an optimum route selection(RS)process.The design of clustering and routing techniques for IoD networks in smart cities shows the novelty of the study.A wide range of experimental analyses is carried out and the comparative study highlighted the improved performance of the SIRSS-CIoD technique over the other approaches.
文摘In order to achieve the specific goal of a smart grid,the concept of electricity Internet of Things(eloT)has been proposed to assist the monitoring and inspection of power transmission line state and optimize the asset utilization.The long power transmission line and the complex field operation environment urge the introduction of drones into the eloT for fast power transmission line inspection,data collection from sensors for further big data analysis,adaptive control of power line voltage,etc.Additionally,drones can also act as a central communication control or relay point to serve the data exchange among sensors,drones and power transmission line maintenance personnel in the scenario where the conventional mobile communication service is not available.However,the fast mobility of drones may affect the signal transmission and position estimation performance,which may further deteriorate the networking performance.In order to solve this problem,a mobility compensation method is proposed,which includes the steps of frequency offset estimation and relative velocity calculation.Through the Monte Carlo simulations,the proposed algorithm shows favorable gains compared with the conventional ones.
基金supported by the National Natural Science Foundation of China (62101603)the Shenzhen Science and Technology Program(KQTD20190929172704911)+3 种基金the Aeronautical Science Foundation of China (2019200M1001)the National Nature Science Foundation of Guangdong (2021A1515011979)the Guangdong Key Laboratory of Advanced IntelliSense Technology (2019B121203006)the Pearl R iver Talent Recruitment Program (2019ZT08X751)。
文摘With the rapidly growing abuse of drones, monitoring and classification of birds and drones have become a crucial safety issue. With similar low radar cross sections(RCSs), velocities, and heights, drones are usually difficult to be distinguished from birds in radar measurements. In this paper, we propose to exploit different periodical motions of birds and drones from highresolution Doppler spectrum sequences(DSSs) for classification.This paper presents an elaborate feature vector representing the periodic fluctuations of RCS and micro kinematics. Fed by the Doppler spectrum and feature sequence, the long to short-time memory(LSTM) is used to solve the time series classification.Different classification schemes to exploit the Doppler spectrum series are validated and compared by extensive real-data experiments, which confirms the effectiveness and superiorities of the proposed algorithm.
文摘Cellular network operators have problems to test their network without affecting their user experience. Testingnetwork performance in a loaded situation is a challenge for the network operator because network performance differswhen it has more load on the radio access part. Therefore, in this paper, deploying swarming drones is proposed to loadthe cellular network and scan/test the network performance more realistically. Besides, manual swarming dronenavigation is not efficient enough to detect problematic regions. Hence, particle swarm optimization is proposed to bedeployed on swarming drone to find the regions where there are performance issues. Swarming drone communicationshelps to deploy the particle swarm optimization (PSO) method on them. Loading and testing swarm separation help tohave almost non-stochastic received signal level as an objective function. Moreover, there are some situations that morethan one network parameter should be used to find a problematic region in the cellular network. It is also proposed toapply multi-objective PSO to find more multi-parameter network optimization at the same time.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project Under Grant Number(46/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R238),Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4340237DSR25.
文摘The recent technological developments have revolutionized the functioning of Wireless Sensor Network(WSN)-based industries with the development of Internet of Things(IoT).Internet of Drones(IoD)is a division under IoT and is utilized for communication amongst drones.While drones are naturally mobile,it undergoes frequent topological changes.Such alterations in the topology cause route election,stability,and scalability problems in IoD.Encryption is considered as an effective method to transmit the images in IoD environment.The current study introduces an Atom Search Optimization basedClusteringwith Encryption Technique for Secure Internet of Drones(ASOCE-SIoD)environment.The key objective of the presented ASOCE-SIoD technique is to group the drones into clusters and encrypt the images captured by drones.The presented ASOCE-SIoD technique follows ASO-based Cluster Head(CH)and cluster construction technique.In addition,signcryption technique is also applied to effectually encrypt the images captured by drones in IoD environment.This process enables the secure transmission of images to the ground station.In order to validate the efficiency of the proposed ASOCE-SIoD technique,several experimental analyses were conducted and the outcomes were inspected under different aspects.The comprehensive comparative analysis results established the superiority of the proposed ASOCE-SIoD model over recent approaches.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number(158/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R140)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:22UQU4210118DSR18.
文摘The Internet of Drones(IoD)offers synchronized access to organized airspace for Unmanned Aerial Vehicles(known as drones).The availability of inexpensive sensors,processors,and wireless communication makes it possible in real time applications.As several applications comprise IoD in real time environment,significant interest has been received by research communications.Since IoD operates in wireless environment,it is needed to design effective intrusion detection system(IDS)to resolve security issues in the IoD environment.This article introduces ametaheuristics feature selection with optimal stacked autoencoder based intrusion detection(MFSOSAEID)in the IoD environment.The major intention of the MFSOSAE-ID technique is to identify the occurrence of intrusions in the IoD environment.To do so,the proposed MFSOSAE-ID technique firstly pre-processes the input data into a compatible format.In addition,the presented MFSOSAEID technique designs a moth flame optimization based feature selection(MFOFS)technique to elect appropriate features.Moreover,firefly algorithm(FFA)with stacked autoencoder(SAE)model is employed for the recognition and classification of intrusions in which the SAE parameters are optimally tuned with utilize of FFA.The performance validation of the MFSOSAE-ID model was tested utilizing benchmark dataset and the outcomes implied the promising performance of the MFSOSAE-ID model over other techniques with maximum accuracy of 99.72%.
文摘Following the successful Swiss Innovation Week(SIW)held in July 2018,the Embassy of Switzerland in China launches its 2nd edition from 12 to 14of June 2019.With Swiss drones as the brand-new theme,Switzerland’s drone ecosystem and innovation in the field of flying robots were present.According to various rankings,Switzerland is one of the most innovative countrie s in the world and also one of the most competitive co untries.
文摘Drones are proving out as a valuable tool and growing quickly in the world of technological advances.The applications of these vehicles are spreading widely in the areas of remote sensing,real time monitoring,goods delivery,security,defense,surveillance,infrastructure inspection.Although,the intent behind creating this tool was remote sensing.Smart drones will be the next big innovation and modification,which would have much wider applications especially in the field of infrastructure where it can reduce risks and lower costs.Current direct evaluation techniques are tedious,and the information caught is frequently not led in a precise manner with the areas tested not being geographically correct and the resulting reports being delivered past the point of no return.These were the reasons,which have increased the demand and usage of unmanned vehicles.In this research paper,we present critical review of main advancements of Drones in the area of transportation and agriculture.We present all the research related to civil applications in those areas and challenges including traffic monitoring,Bridge condition assessment,Roadway asset detection and many other applications related to infrastructure inspection enhancement.The paper also contributes with a discussion on the opportunities,which are opened,and the challenges that need to be addressed.Findings from the case studies,it is reported that around 25%of the bridges in united states are deficient and need continuous monitoring for enhancements to prevent any hazard.Unmanned vehicles could be a great help in monitoring these bridges and other important components of transportation,which can efficiently minimize the cost as well as the time spent on inspection for each of this component,as manual inspection requires labor and time which would be subsequently reduced by incorporating the usage of drones in the area of transportation.
基金the FederalMinistry of Education and Research of Germany under Grant Numbers 16ES1131 and 16ES1128K.
文摘The application field for Unmanned Aerial Vehicle (UAV) technology and its adoption rate have been increasingsteadily in the past years. Decreasing cost of commercial drones has enabled their use at a scale broader thanever before. However, increasing the complexity of UAVs and decreasing the cost, both contribute to a lack ofimplemented securitymeasures and raise new security and safety concerns. For instance, the issue of implausible ortampered UAV sensor measurements is barely addressed in the current research literature and thus, requires moreattention from the research community. The goal of this survey is to extensively review state-of-the-art literatureregarding common sensor- and communication-based vulnerabilities, existing threats, and active or passive cyberattacksagainst UAVs, as well as shed light on the research gaps in the literature. In this work, we describe theUnmanned Aerial System (UAS) architecture to point out the origination sources for security and safety issues.Weevaluate the coverage and completeness of each related research work in a comprehensive comparison table as wellas classify the threats, vulnerabilities and cyber-attacks into sensor-based and communication-based categories.Additionally, for each individual cyber-attack, we describe existing countermeasures or detectionmechanisms andprovide a list of requirements to ensureUAV’s security and safety.We also address the problem of implausible sensormeasurements and introduce the idea of a plausibility check for sensor data. By doing so, we discover additionalmeasures to improve security and safety and report on a research niche that is not well represented in the currentresearch literature.
基金funded by the Research Deanship of the Islamic University of Madinah under grant number 966.
文摘In Saudi Arabia,drones are increasingly used in different sensitive domains like military,health,and agriculture to name a few.Typically,drone cameras capture aerial images of objects and convert them into crucial data,alongside collecting data from distributed sensors supplemented by location data.The interception of the data sent from the drone to the station can lead to substantial threats.To address this issue,highly confidential protection methods must be employed.This paper introduces a novel steganography approach called the Shuffling Steganography Approach(SSA).SSA encompasses five fundamental stages and three proposed algorithms,designed to enhance security through strategic encryption and data hiding techniques.Notably,this method introduces advanced resistance to brute force attacks by employing predefined patterns across a wide array of images,complicating unauthorized access.The initial stage involves encryption,dividing,and disassembling the encrypted data.A small portion of the encrypted data is concealed within the text(Algorithm 1)in the third stage.Subsequently,the parts are merged and mixed(Algorithm 2),and finally,the composed text is hidden within an image(Algorithm 3).Through meticulous investigation and comparative analysis with existing methodologies,the proposed approach demonstrates superiority across various pertinent criteria,including robustness,secret message size capacity,resistance to multiple attacks,and multilingual support.
基金supported by the NationalNatural Science Foundation of China(No.61866023).
文摘Drone logistics is a novel method of distribution that will become prevalent.The advantageous location of the logistics hub enables quicker customer deliveries and lower fuel consumption,resulting in cost savings for the company’s transportation operations.Logistics firms must discern the ideal location for establishing a logistics hub,which is challenging due to the simplicity of existing models and the intricate delivery factors.To simulate the drone logistics environment,this study presents a new mathematical model.The model not only retains the aspects of the current models,but also considers the degree of transportation difficulty from the logistics hub to the village,the capacity of drones for transportation,and the distribution of logistics hub locations.Moreover,this paper proposes an improved particle swarm optimization(PSO)algorithm which is a diversity-based hybrid PSO(DHPSO)algorithm to solve this model.In DHPSO,the Gaussian random walk can enhance global search in the model space,while the bubble-net attacking strategy can speed convergence.Besides,Archimedes spiral strategy is employed to overcome the local optima trap in the model and improve the exploitation of the algorithm.DHPSO maintains a balance between exploration and exploitation while better defining the distribution of logistics hub locations Numerical experiments show that the newly proposed model always achieves better locations than the current model.Comparing DHPSO with other state-of-the-art intelligent algorithms,the efficiency of the scheme can be improved by 42.58%.This means that logistics companies can reduce distribution costs and consumers can enjoy a more enjoyable shopping experience by using DHPSO’s location selection.All the results show the location of the drone logistics hub is solved by DHPSO effectively.
基金supported by the National Natural Science Foundation of China(41977215)。
文摘Long runout landslides involve a massive amount of energy and can be extremely hazardous owing to their long movement distance,high mobility and strong destructive power.Numerical methods have been widely used to predict the landslide runout but a fundamental problem remained is how to determine the reliable numerical parameters.This study proposes a framework to predict the runout of potential landslides through multi-source data collaboration and numerical analysis of historical landslide events.Specifically,for the historical landslide cases,the landslide-induced seismic signal,geophysical surveys,and possible in-situ drone/phone videos(multi-source data collaboration)can validate the numerical results in terms of landslide dynamics and deposit features and help calibrate the numerical(rheological)parameters.Subsequently,the calibrated numerical parameters can be used to numerically predict the runout of potential landslides in the region with a similar geological setting to the recorded events.Application of the runout prediction approach to the 2020 Jiashanying landslide in Guizhou,China gives reasonable results in comparison to the field observations.The numerical parameters are determined from the multi-source data collaboration analysis of a historical case in the region(2019 Shuicheng landslide).The proposed framework for landslide runout prediction can be of great utility for landslide risk assessment and disaster reduction in mountainous regions worldwide.
文摘This article presents a pragmatic quadcopter development template for parcel delivery in Nigeria. The quadcopter is equipped with a camera, parcel pouch and wireless telecommunication to capture live events and send them back to the control station for real-time delivery feedback. The study also discusses the design methodology adopted as a conceptual design approach vital to product development, it encompasses information gathering and identifying the problem, creating the solutions systematically and eventually evaluating and developing a concept for the drone and its attributes and presenting clear results for design calculations.
文摘The use of drones in construction engineering has gained increasing attention in recent years due to its potential to revolutionize the industry. Drones, offer the ability to capture high-resolution aerial imagery and collect data that was previously difficult or impossible to obtain. The integration drones in construction engineering presents opportunities for accurate data collection, analysis and visualization, which can improve decision-making processes and improve project outcomes. For example, drones equipped with GIS technology can be used to capture high-resolution aerial images of construction sites, allowing engineers to monitor progress, identify potential issues, and make informed adjustments as needed. By harnessing drones, civil engineers in the civil engineering field can potentially optimize project planning, design and execution while minimizing risks and costs. The work of this topic examines the case of the use of Drones combined with GIS in construction engineering. During this study, aerial photography of a certain segment of the Pristina-Gjilan Highway was taken. The results generated by the processing of aerial photos have been compared with the project. However, further research is needed to fully understand the capabilities and limitations of these technologies in this specific context, as well as to explore any potential challenges and barriers to their widespread adoption.
文摘The ability to hit a target with precision and from a great distance has been reserved for the world’s superpowers. However, this resource is increasingly being threatened as drones with this long-range and precision capability are becoming more accessible to those who don’t have this strategic ability. This article starts with an analysis of the Iranian HESA Shahed 136 drone to discuss the latest innovations in low-cost long-range precision weapons, specifically the use of kamikaze drones and loitering munitions. This is an exploratory study that starts by discussing the notion of a kamikaze drone and then analyses the design options for the Shahed 136, to reflect on the future of this new type of weapon and its implications for the economic and political relationship between weapon and cost. The conclusion is that the HESA Shahed 136 revolutionizes the concept of precise long-range strikes, a function that until now was reserved for expensive and technologically demanding tactical missiles and aircraft, and which can now be carried out with cheap drones. This creates an arms race not only in producing the most technological and precise weaponry but also the least expensive.