This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is conn...This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode. 更多展开更多
基金supported by National Natural Science Foundation of China(No. 51177142)China Postdoctoral Science Foundation(Nos.2012T50019 and 20110490210)Hebei Provincial Natural Science Foundation of China(No.F2012203063)
文摘This paper focuses on the direct current-alternating current (DC-AC) interfaced microsource based H∞ robust control strategies in microgrids. It presents detail of a DC-AC interfaced microsource model which is connected to the power grid through a controllable switch. A double loop current-regulated voltage control scheme for the DC-AC interface is designed. In the case of the load disturbance and the model uncertainties, the inner voltage and current loop are produced based on the H∞ robust control strategies. The outer power loop uses the droop characteristic controller. Finally, the scheme is simulated using the Matlab/Simulink. The simulation results demonstrate that DC-AC interfaced microsource system can supply high quality power. Also, the proposed control scheme can make the system switch smoothly between the isolated mode and grid-connected mode. 更多