In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in wa...In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.展开更多
The effect of nonmetallic inclusions in the droplet of the stainless steel covered electrode on the porosity was researched.The result shows that the nonmetallic inclusions in the droplet are spherical,their compositi...The effect of nonmetallic inclusions in the droplet of the stainless steel covered electrode on the porosity was researched.The result shows that the nonmetallic inclusions in the droplet are spherical,their composition is different from the one of slag and the inclusions have the character of “inner formation”.When the ratio of rutile to ilmenite in the coated material is increased, the droplet becomes coarse, the content of nonmetallic inclusion in the droplet decreases,and the porosity sensitivity in the weld metal also decreases.When the ratio of fledspar to ilmenite in the coated material is increased, the droplet becomes fine,the content of nonmetallic inclusion in the droplet increases, and the porosity sensitivity in the weld metal increases. When the ratio of Fe_2O_3 to ilmenite in the coated material is increased, the droplet becomes fine, the content of nonmetallic inclusion decreases, while the porosity sensitivity does not reduce.展开更多
文摘In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.
文摘The effect of nonmetallic inclusions in the droplet of the stainless steel covered electrode on the porosity was researched.The result shows that the nonmetallic inclusions in the droplet are spherical,their composition is different from the one of slag and the inclusions have the character of “inner formation”.When the ratio of rutile to ilmenite in the coated material is increased, the droplet becomes coarse, the content of nonmetallic inclusion in the droplet decreases,and the porosity sensitivity in the weld metal also decreases.When the ratio of fledspar to ilmenite in the coated material is increased, the droplet becomes fine,the content of nonmetallic inclusion in the droplet increases, and the porosity sensitivity in the weld metal increases. When the ratio of Fe_2O_3 to ilmenite in the coated material is increased, the droplet becomes fine, the content of nonmetallic inclusion decreases, while the porosity sensitivity does not reduce.