This paper addresses a channel scheduling problem for group of dynamically decoupled nonlinear subsystems with actuators connected through digital communication channels and controlled by a centralized controller. Due...This paper addresses a channel scheduling problem for group of dynamically decoupled nonlinear subsystems with actuators connected through digital communication channels and controlled by a centralized controller. Due to the limited communication capacity, only one channel can be activated and hence there is only one pair of sensor and actuator can communicate with the controller at each time instant. In addition, the communication channels are not reliable so Markovian packed dropout is introduced. A predictive control framework is adopted for controller/scheduler co-design to alleviate the performance loss caused by the limited communication capacity. Instead of sending a single control value, the controller sends a sequence of predicted control values to a selected actuator so that there are control input candidates which can be fed to the subsystem when the actuator does not communicate with the controller. A stochastic algorithm is proposed to schedule the usage of the communication medium and sufficient conditions on stochastic stability are given under some mild assumptions.展开更多
基金supported by the Energy Innovation Research Programme of Singapore under Grant No.NRF2013EWT-EIRP004-012Qilu Youth Scholar Discipline Construction Funding from Shandong University+1 种基金the National Natural Science Foundation of China(NSFC)under Grant Nos.61573220,61633014Projects of Major International(Regional)Joint Research Program NSFC under Grant No.61720106011
文摘This paper addresses a channel scheduling problem for group of dynamically decoupled nonlinear subsystems with actuators connected through digital communication channels and controlled by a centralized controller. Due to the limited communication capacity, only one channel can be activated and hence there is only one pair of sensor and actuator can communicate with the controller at each time instant. In addition, the communication channels are not reliable so Markovian packed dropout is introduced. A predictive control framework is adopted for controller/scheduler co-design to alleviate the performance loss caused by the limited communication capacity. Instead of sending a single control value, the controller sends a sequence of predicted control values to a selected actuator so that there are control input candidates which can be fed to the subsystem when the actuator does not communicate with the controller. A stochastic algorithm is proposed to schedule the usage of the communication medium and sufficient conditions on stochastic stability are given under some mild assumptions.