Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be ...Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi- gated by high-speed imaging. In order to gain a statistically relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab was used for the evaluation of the resulting high amount of image data. This allowed the elimination of the time-consuming manual analysis and further- more, allowed the objective evaluation of the drops' behavior. Different deformation parameters were consid- ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (0axes), which was therefore approximated through an ellipse, allowed the determination of very small de- viations from the spherical shape. The perimeter of the particle (0peri) was used for the description of highly de- formed shapes. In this work the results of a higher viscosity paraffin oil (ηd =127 mPa. s) and a low viscosity solvent (petroleum, ηd = 1.7 mPa-s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimentally determined oscillation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de- formed particles, it is not assumed that a critical deformation value must be reached for the fragmentation pro- cess to occur. Especially for highly deformed particles thin particle filaments are assumed to induce the breakage process and, therefore, be responsible for the separation of drops.展开更多
The droplet formation dynamics of a Newtonian liquid in a drop-on-demand (DOD) inkjet process is numerically investigated by using a volume-of-fluid (VOF) method. We focus on the nozzle geometry, wettability of the in...The droplet formation dynamics of a Newtonian liquid in a drop-on-demand (DOD) inkjet process is numerically investigated by using a volume-of-fluid (VOF) method. We focus on the nozzle geometry, wettability of the interior surface, and the fluid properties to achieve the stable droplet formation with higher velocity. It is found that a nozzle with contracting angle of 45° generates the most stable and fastest single droplet, which is beneficial for the enhanced printing quality and high-throughput printing rate. For this nozzle with the optimal geometry, we systematically change the wettability of the interior surface, i.e., different contact angles. As the contact angle increases, pinch-off time increases and the droplet speed reduces. Finally, fluids with different properties are investigated to identify the printability range.展开更多
A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water...A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.展开更多
New liquid-liquid equilibrium data for polyethylene glycol (PEG) 3000 + CHO2K + H20 systems were measured at 298.15 K and pH values of 7.95, 8.40 and 9.98. It was found that an increase in pH caused the binodal cu...New liquid-liquid equilibrium data for polyethylene glycol (PEG) 3000 + CHO2K + H20 systems were measured at 298.15 K and pH values of 7.95, 8.40 and 9.98. It was found that an increase in pH caused the binodal curve to be displaced downward and the two-phase region to expand. Accordingly, the binodal curve was adjusted to the Pirdashti equation and the tie-line compositions were correlated using the Othmer-Tobias, Bancroft and Hand equations. The study measured the refractive index and densities of several homogeneous binary and ternary solutions. The solutions were used for calibration within a range of 0% to 30% of the mass of the PEG and potassium formate. The density and refractive index data show a linear variation with the mass fraction of the polymer and the salt. The effect of pH on the binodal, tie-line lengths (TLL) and slope of the tie-line (STL) in the systems was exam- ined. It was found that an increase in pH increased the TLL and decreased the STL It was observed that the density of the aqueous two-phase system was influenced by the TLL The difference in density between phases (△p) increased as the TLL and pH increased. It was found that the TLL and Ap showed a linear relationship. The effective excluded volume (EEV) of the PEG was obtained and it was found that EEV also increased as the pH increased.展开更多
采用数值模拟的方法,对在重力作用下微管末端液滴缓慢形成及脱落的动力学过程进行分析和研究。采用有限体积法在轴对称坐标系下求解液滴形成与破碎过程的Navier-Stokes方程,采用VOF(volume of fluid)方法以及基于PLIC(piecewise-linear ...采用数值模拟的方法,对在重力作用下微管末端液滴缓慢形成及脱落的动力学过程进行分析和研究。采用有限体积法在轴对称坐标系下求解液滴形成与破碎过程的Navier-Stokes方程,采用VOF(volume of fluid)方法以及基于PLIC(piecewise-linear interface construction)的几何重构方法追踪液滴运动过程的自由表面,捕捉气液界面的演化过程。分析了量纲1液滴最小颈宽以及量纲1液滴高度等相关特征量随相对时间的变化规律,并与实验结果进行了比较。分析了液滴形貌与液滴轴心线上流向速度的变化以及液滴内部涡环形成与湮灭的关系。通过研究轴心线上压力随时间的变化,分析了压力与液滴颈部位置及断裂位置的关系。展开更多
要开展凝胶推进剂液滴燃烧特性的实验研究,必须首先形成凝胶推进剂液滴,在毛细管末端形成液滴是常用的液滴生成方法之一。为了揭示毛细管末端凝胶推进剂液滴的形成过程,求解了轴对称坐标系下的N-S方程,采用VOF(volume of fluid)方法捕...要开展凝胶推进剂液滴燃烧特性的实验研究,必须首先形成凝胶推进剂液滴,在毛细管末端形成液滴是常用的液滴生成方法之一。为了揭示毛细管末端凝胶推进剂液滴的形成过程,求解了轴对称坐标系下的N-S方程,采用VOF(volume of fluid)方法捕捉液滴形成过程中气液交界面的演化规律,研究了无量纲液滴颈部直径DN/D0和无量纲液滴高度L/D0随时间的变化规律,并且与实验结果进行比较,验证了数值模型的可靠性。计算结果表明:在液滴形成过程中,液滴不是一直处于稳态;液滴颈部存在较大的剪切率,导致粘度下降,进而加快了颈部的断裂和自由液滴的形成;颈部断裂后,与液滴相连的部分迅速与液滴融合,出现很大的正向速度,而与毛细管末端相连的部分迅速收回,出现很大的负向速度。展开更多
在轴对称坐标系下,采用有限体积法求解液滴形成的N-S方程,运用Ansys 13.0中的VOF(Volume of Fluid)方法对重力作用下,流体在微管口液滴形成过程进行数值模拟,采用PLIC(Piecewise Linear Interface Construction)的几何重构方法成功捕捉...在轴对称坐标系下,采用有限体积法求解液滴形成的N-S方程,运用Ansys 13.0中的VOF(Volume of Fluid)方法对重力作用下,流体在微管口液滴形成过程进行数值模拟,采用PLIC(Piecewise Linear Interface Construction)的几何重构方法成功捕捉液滴形成、变化与脱落过程的气液交界面,得到与实验相一致的研究结果,表明建模方法可行。分析了速度对液滴运动过程的影响,在颈缩阶段,入流速度决定流体内部速度,轴线压力呈线性增加趋势;断裂阶段,重力决定流体内部速度,轴线压力与速度波动趋势一致,最后得到无量纲数A(液滴完整长度与管内径比)和We的关联式A 8.611 We 2.98。展开更多
基金supported by the German Research Foundation (DFG) within the project "Modelling,Simulation,and Control of Drop Size Distributions in Stirred Liquid/liquid Systems - KR1639/15-1"the "Max-Buchner-Forschungsstiftung"
文摘Drop breakage and coalescence influence the particle formation in liquid-liquid dispersions. In order to reduce the influencing factors of the whole dispersion process, single drops where coalescence processes can be neglected were analyzed in this work. Drops passing the turbulent vicinity of a single stirrer blade were investi- gated by high-speed imaging. In order to gain a statistically relevant amount of drops passing the area of interest and corresponding breakage events, at least 1600 droplets were considered for each parameter set of this work. A specially developed fully automatic image analysis based on Matlab was used for the evaluation of the resulting high amount of image data. This allowed the elimination of the time-consuming manual analysis and further- more, allowed the objective evaluation of the drops' behavior. Different deformation parameters were consid- ered in order to describe the drop deformation dynamics properly. Regarding the ratio of both main particle axes (0axes), which was therefore approximated through an ellipse, allowed the determination of very small de- viations from the spherical shape. The perimeter of the particle (0peri) was used for the description of highly de- formed shapes. In this work the results of a higher viscosity paraffin oil (ηd =127 mPa. s) and a low viscosity solvent (petroleum, ηd = 1.7 mPa-s) are presented with and without the addition of SDS to the continuous water phase. All results show that the experimentally determined oscillation but also deformation times underlie a wide spreading. Drop deformations significantly increased not only with increasing droplet viscosity, but also with decreasing interfacial tension. Highly deformed particles of one droplet species were more likely to break than more or less spherical particles. As droplet fragmentation results from a variety of different macro-scale de- formed particles, it is not assumed that a critical deformation value must be reached for the fragmentation pro- cess to occur. Especially for highly deformed particles thin particle filaments are assumed to induce the breakage process and, therefore, be responsible for the separation of drops.
基金Project supported by the National Natural Science Foundation of China(No.11802004)
文摘The droplet formation dynamics of a Newtonian liquid in a drop-on-demand (DOD) inkjet process is numerically investigated by using a volume-of-fluid (VOF) method. We focus on the nozzle geometry, wettability of the interior surface, and the fluid properties to achieve the stable droplet formation with higher velocity. It is found that a nozzle with contracting angle of 45° generates the most stable and fastest single droplet, which is beneficial for the enhanced printing quality and high-throughput printing rate. For this nozzle with the optimal geometry, we systematically change the wettability of the interior surface, i.e., different contact angles. As the contact angle increases, pinch-off time increases and the droplet speed reduces. Finally, fluids with different properties are investigated to identify the printability range.
基金Supported by the National Natural Science Foundation of China(No.21105088)the Program for Science and Technology Projects of the Education Department of Fujian Province,China(No.JA10211)
文摘A new liquid-liquid microextraction method based on the solidification of floating organic drops coupled with gas chromatography was developed for the determination of trace benzene, toluene and xylene(BTX) in water samples. In the microextraction procedure, a microdrop of n-decanol was delivered to the surface of the analytes’ solution, and stirred for a desired time. Following the absolute extraction, the sample vial was cooled in an ice bath for 10 min. The solidified n-decanol was then transferred into a plastic tube and melted naturally; and 1 μL of it was injected into gas chromatography for analysis. Factors relevant to the extraction efficiency were studied and optimized. The optimal experimental conditions were: 15 μL of n-decanol as extractive solvent, 30 mL of solution containing analytes, no salt, the stirring rate 400 r/min, the extraction temperature 30 °C, and the extraction time 30 min. Under those optimized conditions, the detection limit(LOD) of analytes was in a range of 0.05―0.10 ng/mL by the developed method. A good linearity(r0.99) in a calibration range of 0.01―100 μg/mL was obtained. The recoveries of the real samples at different spiked levels of BTX were in the range from 92.2% to 103.4%.
文摘New liquid-liquid equilibrium data for polyethylene glycol (PEG) 3000 + CHO2K + H20 systems were measured at 298.15 K and pH values of 7.95, 8.40 and 9.98. It was found that an increase in pH caused the binodal curve to be displaced downward and the two-phase region to expand. Accordingly, the binodal curve was adjusted to the Pirdashti equation and the tie-line compositions were correlated using the Othmer-Tobias, Bancroft and Hand equations. The study measured the refractive index and densities of several homogeneous binary and ternary solutions. The solutions were used for calibration within a range of 0% to 30% of the mass of the PEG and potassium formate. The density and refractive index data show a linear variation with the mass fraction of the polymer and the salt. The effect of pH on the binodal, tie-line lengths (TLL) and slope of the tie-line (STL) in the systems was exam- ined. It was found that an increase in pH increased the TLL and decreased the STL It was observed that the density of the aqueous two-phase system was influenced by the TLL The difference in density between phases (△p) increased as the TLL and pH increased. It was found that the TLL and Ap showed a linear relationship. The effective excluded volume (EEV) of the PEG was obtained and it was found that EEV also increased as the pH increased.
文摘采用数值模拟的方法,对在重力作用下微管末端液滴缓慢形成及脱落的动力学过程进行分析和研究。采用有限体积法在轴对称坐标系下求解液滴形成与破碎过程的Navier-Stokes方程,采用VOF(volume of fluid)方法以及基于PLIC(piecewise-linear interface construction)的几何重构方法追踪液滴运动过程的自由表面,捕捉气液界面的演化过程。分析了量纲1液滴最小颈宽以及量纲1液滴高度等相关特征量随相对时间的变化规律,并与实验结果进行了比较。分析了液滴形貌与液滴轴心线上流向速度的变化以及液滴内部涡环形成与湮灭的关系。通过研究轴心线上压力随时间的变化,分析了压力与液滴颈部位置及断裂位置的关系。
文摘要开展凝胶推进剂液滴燃烧特性的实验研究,必须首先形成凝胶推进剂液滴,在毛细管末端形成液滴是常用的液滴生成方法之一。为了揭示毛细管末端凝胶推进剂液滴的形成过程,求解了轴对称坐标系下的N-S方程,采用VOF(volume of fluid)方法捕捉液滴形成过程中气液交界面的演化规律,研究了无量纲液滴颈部直径DN/D0和无量纲液滴高度L/D0随时间的变化规律,并且与实验结果进行比较,验证了数值模型的可靠性。计算结果表明:在液滴形成过程中,液滴不是一直处于稳态;液滴颈部存在较大的剪切率,导致粘度下降,进而加快了颈部的断裂和自由液滴的形成;颈部断裂后,与液滴相连的部分迅速与液滴融合,出现很大的正向速度,而与毛细管末端相连的部分迅速收回,出现很大的负向速度。
文摘在轴对称坐标系下,采用有限体积法求解液滴形成的N-S方程,运用Ansys 13.0中的VOF(Volume of Fluid)方法对重力作用下,流体在微管口液滴形成过程进行数值模拟,采用PLIC(Piecewise Linear Interface Construction)的几何重构方法成功捕捉液滴形成、变化与脱落过程的气液交界面,得到与实验相一致的研究结果,表明建模方法可行。分析了速度对液滴运动过程的影响,在颈缩阶段,入流速度决定流体内部速度,轴线压力呈线性增加趋势;断裂阶段,重力决定流体内部速度,轴线压力与速度波动趋势一致,最后得到无量纲数A(液滴完整长度与管内径比)和We的关联式A 8.611 We 2.98。