Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection b...Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa.展开更多
Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation...Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.展开更多
The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and pre...The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.展开更多
[Objective] This study was to reveal the correlation between leaf area and drought resistance in different varieties of alfalfa.[Method] Using various alfalfa varieties as experimental materials,the drought resistance...[Objective] This study was to reveal the correlation between leaf area and drought resistance in different varieties of alfalfa.[Method] Using various alfalfa varieties as experimental materials,the drought resistance of leaves of drought-stressed alfalfa plants was assessed by measuring the content of free proline for analyzing its correlation with leaf area.[Result] Under drought condition,the drought resistance of alfalfa is directly related to leaf area in a positive correlation.[Conclusion] Leaf area could be used as an institutional assistant index to reflect the resistance of different alfalfa varieties.展开更多
Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to...Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.展开更多
With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from ...With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.展开更多
Drought is one of the major meteorological disasters affecting the climate in China.In this paper,the interannual variation and seasonal distribution changes of drought at different time scales were analyzed with the ...Drought is one of the major meteorological disasters affecting the climate in China.In this paper,the interannual variation and seasonal distribution changes of drought at different time scales were analyzed with the standardized precipitation index( SPI) as the drought evaluation criterion to the precipitation data of the 5 meteorological stations of Jinan,Tai'an,Yiyuan,Shen County and Yanzhou from 1960 to 2013.The results showed that:(1) the frequency of drought was low in spring and summer in inland areas of Shandong Province,while autumn had frequent occurrences of moderate drought,and winter had frequent occurrences of heavy and severe droughts.(2) In the 1960 s,1980 s and early 21^(st) century,the number of droughts increased significantly,and the SPI values showed a significant decrease.(3) The 3-month time scale range was wide,during which the frequency of occurrence was high.The trend of SPI changes at the 12-month time scale was affected by the accumulation of antecedent precipitation,and the change was slow.The research results can provide a scientific reference for arid climate analysis and water resources management in agriculture and production in inland areas of Shandong Province.展开更多
The effect of soil and water conservation (SWC) practices on controlling surface runoff and soil loss was studied in drought prone banana growing areas of Uganda, during the two major rainy seasons of 2014. The stud...The effect of soil and water conservation (SWC) practices on controlling surface runoff and soil loss was studied in drought prone banana growing areas of Uganda, during the two major rainy seasons of 2014. The study was conducted at two sites-- Ntungamo (Southwest) and Sembabule (Central), with comparable slopes of about 13%-25%. The treatments included mulch, manure, manure + mulch and a control with no conservation. Results indicated that conservation practices of mulch and manure + mulch significantly reduced surface runoff and soil loss by about 72%-85%, when compared to farmers' up-and-down cultivation practice (control). It was also observed that significantly greater amounts of soil loss occurred from manure and control plots than the ones with mulch. Thus, the combination of manure and mulch is recommended for uptake by crop farmers in the study areas, if they are to overcome drought stress and adapt to changes in climate. More research is needed to quantify nutrient losses resulting from runoff under the different SWC techniques. Modeling such effects is essential in assessing the impacts of SWC practices on soil and crop productivity.展开更多
In GharehAghaj basin drought has the most profound effect on the way of living and regional economy. Drought Hazard by nature is a result of interrelated parameters concerned. The objective of this paper presents a mo...In GharehAghaj basin drought has the most profound effect on the way of living and regional economy. Drought Hazard by nature is a result of interrelated parameters concerned. The objective of this paper presents a model to assess hazard of drought using the Geographical Information System (GIS). The data analyzed have been gathered from the records, reports and maps published by the governmental offices of Iran. Various drought hazard indicators have different severity classification in different models. The drought hazard indicator maps take into account the meteorological, hydrological, physical and socioeconomic characteristics that related to drought hazard. Each of the hazard indicator maps and also final hazard map are classified into 4 hazard classes of drought: mild, moderate, severe and very severe. The final hazard classes were defined on the basis of hazard scores arrived at by assigning the appropriate attributes to the indicators and the final hazard map was prepared by overlaying different hazard indicator maps in the GIS, deploying the new model. The final Hazard Map shows that moderate hazard areas (89.87% of the basin) are much widespread than areas under severe hazard (10.13% of the basin) which are observed in the Southeast of the region.展开更多
The laws of water consumption in corn,peanuts and millet on the semi-drought area of western Liaoning Province were studied through the FAO-Penman Monteith method and the water balance method.Among three corps,the amo...The laws of water consumption in corn,peanuts and millet on the semi-drought area of western Liaoning Province were studied through the FAO-Penman Monteith method and the water balance method.Among three corps,the amount of the day water demand,the whole growth period water demand and the soil water deficit of corn were all the largest.At the same time,its degree of agreement between the water demand and the level of precipitation was the worst,and its average in crop coefficient was larger.The amount of th...展开更多
[Objective] To research the evolution of drought in China and its impact on agriculture in recent years. [Method] We analyzed land area covered, area affected, and disaster rate arising from severe drought occurring i...[Objective] To research the evolution of drought in China and its impact on agriculture in recent years. [Method] We analyzed land area covered, area affected, and disaster rate arising from severe drought occurring in China in the period 1978-2008, in conjunction with the planting area of crops in China and forcing of drought on the planting area of crops. [Result] In recent years, a large portion of provinces and cities in China, especially the southern areas, the drought has not yet been eased, but tends to deteriorate; since 1978, the area affected in China occasioned by drought has been rapidly mounting, and total crop failure area caused by drought, on the whole, also assumes trend of rise. In the mean time, population explosion and economic development are responsible for dwindling of planting area of grain, and tardy rise in total grain yield. [Conclusion] Constructing harmonious valley and achieving concordant coexistence between human and water, is to regulate human behaviors and further strengthen related ecological protection work, on the basis of scientifically understanding and correctly harnessing natural law.展开更多
基金supported the National Natural Science Foundation of China(42071371)the National Key R&D Program of China(2018YFB0505400).
文摘Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa.
基金jointly supported by the National Natural Science Foundation of China(42361024,42101030,42261079,and 41961058)the Talent Project of Science and Technology in Inner Mongolia of China(NJYT22027 and NJYT23019)the Fundamental Research Funds for the Inner Mongolia Normal University,China(2022JBBJ014 and 2022JBQN093)。
文摘Gross primary productivity(GPP)of vegetation is an important constituent of the terrestrial carbon sinks and is significantly influenced by drought.Understanding the impact of droughts on different types of vegetation GPP provides insight into the spatiotemporal variation of terrestrial carbon sinks,aiding efforts to mitigate the detrimental effects of climate change.In this study,we utilized the precipitation and temperature data from the Climatic Research Unit,the standardized precipitation evapotranspiration index(SPEI),the standardized precipitation index(SPI),and the simulated vegetation GPP using the eddy covariance-light use efficiency(EC-LUE)model to analyze the spatiotemporal change of GPP and its response to different drought indices in the Mongolian Plateau during 1982-2018.The main findings indicated that vegetation GPP decreased in 50.53% of the plateau,mainly in its northern and northeastern parts,while it increased in the remaining 49.47%area.Specifically,meadow steppe(78.92%)and deciduous forest(79.46%)witnessed a significant decrease in vegetation GPP,while alpine steppe(75.08%),cropland(76.27%),and sandy vegetation(87.88%)recovered well.Warming aridification areas accounted for 71.39% of the affected areas,while 28.53% of the areas underwent severe aridification,mainly located in the south and central regions.Notably,the warming aridification areas of desert steppe(92.68%)and sandy vegetation(90.24%)were significant.Climate warming was found to amplify the sensitivity of coniferous forest,deciduous forest,meadow steppe,and alpine steppe GPP to drought.Additionally,the drought sensitivity of vegetation GPP in the Mongolian Plateau gradually decreased as altitude increased.The cumulative effect of drought on vegetation GPP persisted for 3.00-8.00 months.The findings of this study will improve the understanding of how drought influences vegetation in arid and semi-arid areas.
文摘The characteristics of drought in Xinjiang Uygur Autonomous Region(Xinjiang),China have changed due to changes in the spatiotemporal patterns of temperature and precipitation,however,the effects of temperature and precipitation—the two most important factors influencing drought—have not yet been thoroughly explored in this region.In this study,we first calculated the standard precipitation evapotranspiration index(SPEI)in Xinjiang from 1980 to 2020 based on the monthly precipitation and monthly average temperature.Then the spatiotemporal characteristics of temperature,precipitation,and drought in Xinjiang from 1980 to 2020 were analyzed using the Theil-Sen median trend analysis method and Mann-Kendall test.A series of SPEI-based scenario-setting experiments by combining the observed and detrended climatic factors were utilized to quantify the effects of individual climatic factor(i.e.,temperature and precipitation).The results revealed that both temperature and precipitation had experienced increasing trends at most meteorological stations in Xinjiang from 1980 to 2020,especially the spring temperature and winter precipitation.Due to the influence of temperature,trends of intensifying drought have been observed at spring,summer,autumn,and annual scales.In addition,the drought trends in southern Xinjiang were more notable than those in northern Xinjiang.From 1980 to 2020,temperature trends exacerbated drought trends,but precipitation trends alleviated drought trends in Xinjiang.Most meteorological stations in Xinjiang exhibited temperature-dominated drought trend except in winter;in winter,most stations exhibited precipitation-dominated wetting trend.The findings of this study highlight the importance of the impact of temperature on drought in Xinjiang and deepen the understanding of the factors influencing drought.
基金Supported by National Nonprofit Institute Research Grant(BRF090202)~~
文摘[Objective] This study was to reveal the correlation between leaf area and drought resistance in different varieties of alfalfa.[Method] Using various alfalfa varieties as experimental materials,the drought resistance of leaves of drought-stressed alfalfa plants was assessed by measuring the content of free proline for analyzing its correlation with leaf area.[Result] Under drought condition,the drought resistance of alfalfa is directly related to leaf area in a positive correlation.[Conclusion] Leaf area could be used as an institutional assistant index to reflect the resistance of different alfalfa varieties.
基金a part of the Project on "Building Effective Water Governance in the Asian Highlands" supported by Canada’s International Development Research Centre (IDRC)National Science Foundation of China, Grant No. 31270524the CGIAR research programs on ‘Climate change adaptation and mitigation’ (CRP6.4)
文摘Climatic extremes such as drought have becoming a severe climate-related problem in many regions all over the world that can induce anomalies in vegetation condition. Growth and CO2 uptake by plants are constrained to a large extent by drought.Therefore, it is important to understand the spatial and temporal responses of vegetation to drought across the various land cover types and different regions. Leaf area index(LAI) derived from Global Land Surface Satellite(GLASS) data was used to evaluate the response of vegetation to drought occurrence across Yunnan Province, China(2001-2010). The meteorological drought was assessed based on Standardized Precipitation Index(SPI)values. Pearson's correlation coefficients between LAI and SPI were examined across several timescales within six sub-regions of the Yunnan. Further, the drought-prone area was identified based on LAI anomaly values. Lag and cumulative effects of lack of precipitation on vegetation were evident, with significant correlations found using 3-, 6-, 9-and 12-month timescale. We found 9-month timescale has higher correlations compared to another timescale.Approximately 29.4% of Yunnan's area was classified as drought-prone area, based on the LAI anomaly values. Most of this drought-prone area was distributed in the mountainous region of Yunnan.From the research, it is evident that GLASS LAI can be effectively used as an indicator for assessing drought conditions and it provide valuable information for drought risk defense and preparedness.
基金The Second Tibetan Plateau Scientific Expedition and Research(STEP)Program(2019QZKK0105)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ022)+2 种基金Special Fund for the Basic Scientific Research Expenses of the Chinese Academy of Meteorological Sciences(2021Z013)the Science and Technology Development Fund of the Chinese Academy of Meteorological Sciences(2022KJ021)Major Projects of the Natural Science Foundation of China(91337000)。
文摘With the extreme drought(flood)event in southern China from July to August in 2022(1999)as the research object,based on the comprehensive diagnosis and composite analysis on the anomalous drought and flood years from July to August in 1961-2022,it is found that there are significant differences in the characteristics of the vertically integrated moisture flux(VIMF)anomaly circulation pattern and the VIMF convergence(VIMFC)anomaly in southern China in drought and flood years,and the VIMFC,a physical quantity,can be regarded as an indicative physical factor for the"strong signal"of drought and flood in southern China.Specifically,in drought years,the VIMF anomaly in southern China is an anticyclonic circulation pattern and the divergence characteristics of the VIMFC are prominent,while those are opposite in flood years.Based on the SST anomaly in the typical draught year of 2022 in southern China and the SST deviation distribution characteristics of abnormal draught and flood years from 1961 to 2022,five SST high impact areas(i.e.,the North Pacific Ocean,Northwest Pacific Ocean,Southwest Pacific Ocean,Indian Ocean,and East Pacific Ocean)are selected via the correlation analysis of VIMFC and the global SST in the preceding months(May and June)and in the study period(July and August)in 1961-2022,and their contributions to drought and flood in southern China are quantified.Our study reveals not only the persistent anomalous variation of SST in the Pacific and the Indian Ocean but also its impact on the pattern of moisture transport.Furthermore,it can be discovered from the positive and negative phase fitting of SST that the SST composite flow field in high impact areas can exhibit two types of anomalous moisture transport structures that are opposite to each other,namely an anticyclonic(cyclonic)circulation pattern anomaly in southern China and the coastal areas of east China.These two types of opposite anomalous moisture transport structures can not only drive the formation of drought(flood)in southern China but also exert its influence on the persistent development of the extreme weather.
基金Supported by Colleges and universities scientific research project of Shandong(J18KA197)
文摘Drought is one of the major meteorological disasters affecting the climate in China.In this paper,the interannual variation and seasonal distribution changes of drought at different time scales were analyzed with the standardized precipitation index( SPI) as the drought evaluation criterion to the precipitation data of the 5 meteorological stations of Jinan,Tai'an,Yiyuan,Shen County and Yanzhou from 1960 to 2013.The results showed that:(1) the frequency of drought was low in spring and summer in inland areas of Shandong Province,while autumn had frequent occurrences of moderate drought,and winter had frequent occurrences of heavy and severe droughts.(2) In the 1960 s,1980 s and early 21^(st) century,the number of droughts increased significantly,and the SPI values showed a significant decrease.(3) The 3-month time scale range was wide,during which the frequency of occurrence was high.The trend of SPI changes at the 12-month time scale was affected by the accumulation of antecedent precipitation,and the change was slow.The research results can provide a scientific reference for arid climate analysis and water resources management in agriculture and production in inland areas of Shandong Province.
文摘The effect of soil and water conservation (SWC) practices on controlling surface runoff and soil loss was studied in drought prone banana growing areas of Uganda, during the two major rainy seasons of 2014. The study was conducted at two sites-- Ntungamo (Southwest) and Sembabule (Central), with comparable slopes of about 13%-25%. The treatments included mulch, manure, manure + mulch and a control with no conservation. Results indicated that conservation practices of mulch and manure + mulch significantly reduced surface runoff and soil loss by about 72%-85%, when compared to farmers' up-and-down cultivation practice (control). It was also observed that significantly greater amounts of soil loss occurred from manure and control plots than the ones with mulch. Thus, the combination of manure and mulch is recommended for uptake by crop farmers in the study areas, if they are to overcome drought stress and adapt to changes in climate. More research is needed to quantify nutrient losses resulting from runoff under the different SWC techniques. Modeling such effects is essential in assessing the impacts of SWC practices on soil and crop productivity.
文摘In GharehAghaj basin drought has the most profound effect on the way of living and regional economy. Drought Hazard by nature is a result of interrelated parameters concerned. The objective of this paper presents a model to assess hazard of drought using the Geographical Information System (GIS). The data analyzed have been gathered from the records, reports and maps published by the governmental offices of Iran. Various drought hazard indicators have different severity classification in different models. The drought hazard indicator maps take into account the meteorological, hydrological, physical and socioeconomic characteristics that related to drought hazard. Each of the hazard indicator maps and also final hazard map are classified into 4 hazard classes of drought: mild, moderate, severe and very severe. The final hazard classes were defined on the basis of hazard scores arrived at by assigning the appropriate attributes to the indicators and the final hazard map was prepared by overlaying different hazard indicator maps in the GIS, deploying the new model. The final Hazard Map shows that moderate hazard areas (89.87% of the basin) are much widespread than areas under severe hazard (10.13% of the basin) which are observed in the Southeast of the region.
基金Supported by the National Key Scientific and Technological Project,China (2006BAD29b06)
文摘The laws of water consumption in corn,peanuts and millet on the semi-drought area of western Liaoning Province were studied through the FAO-Penman Monteith method and the water balance method.Among three corps,the amount of the day water demand,the whole growth period water demand and the soil water deficit of corn were all the largest.At the same time,its degree of agreement between the water demand and the level of precipitation was the worst,and its average in crop coefficient was larger.The amount of th...
基金Supported by Ministry of Water Resources Public Welfare Industry Research Program(200901026)Philosophical Social Sciences Foundation of Jiangsu Colleges(08SJD7900052)~~
文摘[Objective] To research the evolution of drought in China and its impact on agriculture in recent years. [Method] We analyzed land area covered, area affected, and disaster rate arising from severe drought occurring in China in the period 1978-2008, in conjunction with the planting area of crops in China and forcing of drought on the planting area of crops. [Result] In recent years, a large portion of provinces and cities in China, especially the southern areas, the drought has not yet been eased, but tends to deteriorate; since 1978, the area affected in China occasioned by drought has been rapidly mounting, and total crop failure area caused by drought, on the whole, also assumes trend of rise. In the mean time, population explosion and economic development are responsible for dwindling of planting area of grain, and tardy rise in total grain yield. [Conclusion] Constructing harmonious valley and achieving concordant coexistence between human and water, is to regulate human behaviors and further strengthen related ecological protection work, on the basis of scientifically understanding and correctly harnessing natural law.