Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regio...Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.展开更多
Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or...Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.展开更多
Meteorological drought has been an inevitable natural disaster throughout Mexican history and the northern and northwestern parts of Mexico(i.e., the studied area), where the mean annual precipitation(MAP) is less...Meteorological drought has been an inevitable natural disaster throughout Mexican history and the northern and northwestern parts of Mexico(i.e., the studied area), where the mean annual precipitation(MAP) is less than 500 mm, have suffered even more from droughts in the past. The aim of this study was to conduct a meteorological drought analysis of the available MAP data(1950–2013) from 649 meteorological stations selected from the studied area and to predict the drought features under the different IPCC-prescribed climate change scenarios. To determine the long-term drought features, we collected 1×10~4 synthetic samples using the periodic autoregressive moving average(PARMA) model for each rainfall series. The simulations first consider the present prevailing precipitation conditions(i.e., the average from 1950 to 2013) and then the precipitation anomalies under IPCC-prescribed RCP 4.5 scenario and RCP 8.5 scenario. The results indicated that the climate changes under the prescribed scenarios would significantly increase the duration and intensity of droughts. The most severe impacts may occur in the central plateau and in the Baja California Peninsula. Thus, it will be necessary to establish adequate protective measures for the sustainable management of water resources in these regions.展开更多
Quantifying the changes and propagation of drought is of great importance for regional eco-environmental safety and water-related disaster management under global warming.In this study,phase 6 of the Coupled Model Int...Quantifying the changes and propagation of drought is of great importance for regional eco-environmental safety and water-related disaster management under global warming.In this study,phase 6 of the Coupled Model Intercomparison Project was employed to examine future meteorological(Standardized Precipitation Index,SPI,and Standardized Precipitation-Evapotranspiration Index,SPEI),hydrological(Standardized Runoff Index,SRI),and agricultural(Standardized Soil moisture Index,SSI) drought under two warming scenarios(SSP2-4.5 and SSP5-8.5).The results show that,across the globe,different types of drought events generally exhibit a larger spatial extent,longer duration,and greater severity from 1901 to 2100,with SPEI drought experiencing the greatest increases.Although SRI and SSI drought are expected to be more intensifying than SPI drought,the models show higher consistency in projections of SPI changes.Regions with robust drying trends include the southwestern United States,Amazon Basin,Mediterranean,southern Africa,southern Asia,and Australia.It is also found that meteorological drought shows a higher correlation with hydrological drought than with agricultural drought,especially in warm and humid regions.Additionally,the maximum correlation between meteorological and hydrological drought tends to be achieved at a short time scale.These findings have important implications for drought monitoring and policy interventions for water resource management under a changing climate.展开更多
Drought occurs in almost all climate zones and is characterized by prolonged water deficiency due to unbalanced demand and supply of water,persistent insufficient precipitation,lack of moisture,and high evapotranspira...Drought occurs in almost all climate zones and is characterized by prolonged water deficiency due to unbalanced demand and supply of water,persistent insufficient precipitation,lack of moisture,and high evapotranspiration.Drought caused by insufficient precipitation is a temporary and recurring meteorological event.Precipitation in semi-arid regions is different from that in other regions,ranging from 50 to 750 mm.In general,the semi-arid regions in the west and north of Iran received more precipitation than those in the east and south.The Terrestrial Climate(TerraClimate)data,including monthly precipitation,minimum temperature,maximum temperature,potential evapotranspiration,and the Palmer Drought Severity Index(PDSI)developed by the University of Idaho,were used in this study.The PDSI data was directly obtained from the Google Earth Engine platform.The Standardized Precipitation Index(SPI)and the Standardized Precipitation Evapotranspiration Index(SPEI)on two different scales were calculated in time series and also both SPI and SPEI were shown in spatial distribution maps.The result showed that normal conditions were a common occurrence in the semi-arid regions of Iran over the majority of years from 2000 to 2020,according to a spatiotemporal study of the SPI at 3-month and 12-month time scales as well as the SPEI at 3-month and 12-month time scales.Moreover,the PDSI detected extreme dry years during 2000-2003 and in 2007,2014,and 2018.In many semi-arid regions of Iran,the SPI at 3-month time scale is higher than the SPEI at 3-month time scale in 2000,2008,2014,2015,and 2018.In general,this study concluded that the semi-arid regions underwent normal weather conditions from 2000 to 2020.In a way,moderate,severe,and extreme dry occurred with a lesser percentage,gradually decreasing.According to the PDSI,during 2000-2003 and 2007-2014,extreme dry struck practically all hot semi-arid regions of Iran.Several parts of the cold semi-arid regions,on the other hand,only experienced moderate to severe dry from 2000 to 2003,except for the eastern areas and wetter regions.The significance of this study is the determination of the spatiotemporal distribution of meteorological drought in semi-arid regions of Iran using strongly validated data from TerraClimate.展开更多
Meteorological drought is a natural hazard that can occur under all climatic regimes. Monitoring the drought is a vital and important part of predicting and analyzing drought impacts. Because no single index can repre...Meteorological drought is a natural hazard that can occur under all climatic regimes. Monitoring the drought is a vital and important part of predicting and analyzing drought impacts. Because no single index can represent all facets of meteorological drought, we took a multi-index approach for drought monitoring in this study. We assessed the ability of eight precipitation-based drought indices(SPI(Standardized Precipitation Index), PNI(Percent of Normal Index), DI(Deciles index), EDI(Effective drought index), CZI(China-Z index), MCZI(Modified CZI), RAI(Rainfall Anomaly Index), and ZSI(Z-score Index)) calculated from the station-observed precipitation data and the Ag MERRA gridded precipitation data to assess historical drought events during the period 1987–2010 for the Kashafrood Basin of Iran. We also presented the Degree of Dryness Index(DDI) for comparing the intensities of different drought categories in each year of the study period(1987–2010). In general, the correlations among drought indices calculated from the Ag MERRA precipitation data were higher than those derived from the station-observed precipitation data. All indices indicated the most severe droughts for the study period occurred in 2001 and 2008. Regardless of data input source, SPI, PNI, and DI were highly inter-correlated(R^2=0.99). Furthermore, the higher correlations(R^2=0.99) were also found between CZI and MCZI, and between ZSI and RAI. All indices were able to track drought intensity, but EDI and RAI showed higher DDI values compared with the other indices. Based on the strong correlation among drought indices derived from the Ag MERRA precipitation data and from the station-observed precipitation data, we suggest that the Ag MERRA precipitation data can be accepted to fill the gaps existed in the station-observed precipitation data in future studies in Iran. In addition, if tested by station-observed precipitation data, the Ag MERRA precipitation data may be used for the data-lacking areas.展开更多
In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propaga...In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propagation,mainly focusing on drought propagation time and propagation probability.However,there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels.Therefore,we took the Heihe River Basin(HRB)of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020,and subsequently explore their sensitivities to seasons(irrigation and non-irrigation seasons)and drought levels.The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability.The results determined the average drought propagation time as 8 months in the whole basin,which was reduced by 2 months(i.e.,6 months)on average during the irrigation season and prolonged by 2 months(i.e.,10 months)during the non-irrigation season.Propagation probability was sensitive to both seasons and drought levels,and the sensitivities had noticeable spatial differences in the whole basin.The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream,midstream,and southern downstream regions of the HRB.Lesser agricultural droughts were more likely to be triggered during the irrigation season,while severer agricultural droughts were occurred mostly during the non-irrigation season.The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts.This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.展开更多
The hydrographic eastern Mediterranean Basin of Turkey is a drought sensitive area.The basin is an important agricultural area and it is necessary to determine the extent of extreme regional climatic changes as they o...The hydrographic eastern Mediterranean Basin of Turkey is a drought sensitive area.The basin is an important agricultural area and it is necessary to determine the extent of extreme regional climatic changes as they occur in this basin.Pearson’s correlation coefficient was used to show the correlation between standardized precipitation index(SPI)and standardized streamflow index(SSI)values on different time scales.Data from five meteorological stations and seven stream gauging stations in four sub-basins of the eastern Mediterranean Basin were analyzed over the period from 1967 to 2017.The correlation between SSI and SPI indicated that in response to meteorological drought,hydrological drought experiences a one-year delay then occurs in the following year.This is more evident at all stations from the mid-1990 s.The main factor causing hydrological drought is prolonged low precipitation or the presence of a particularly dry year.Results showed that over a long period(12 months),hydrological drought is longer and more severe in the upper part than the lower part of the sub-basins.According to SPI-12 values,an uninterrupted drought period is observed from 2002–2003 to 2008–2009.Results indicated that among the drought events,moderate drought is the most common on all timescales in all sub-basins during the past 51 years.Long-term dry periods with moderate and severe droughts are observed for up to 10 years or more since the late 1990 s,especially in the upper part of the sub-basins.As precipitation increases in late autumn and early winter,the stream flow also increases and thus the highest and most positive correlation values(0.26–0.54)are found in January.Correlation values(ranging between–0.11 and–0.01)are weaker and negative in summer and autumn due to low rainfall.This is more evident at all stations in September.The relation between hydrological and meteorological droughts is more evident,with the correlation values above 0.50 on longer timescales(12-and 24-months).The results presented in this study allow an understanding of the characteristics of drought events and are instructive for overcoming drought.This will facilitate the development of strategies for the appropriate management of water resources in the eastern Mediterranean Basin,which has a high agricultural potential.展开更多
The management of water resources in watersheds has become increasingly difficult in recent years due to the frequency and intensity of drought sequences. The Lobo River catchment, like most tropical regions, has expe...The management of water resources in watersheds has become increasingly difficult in recent years due to the frequency and intensity of drought sequences. The Lobo River catchment, like most tropical regions, has experienced alternating wet and dry periods. These drought periods have a significant impact on the availability of water resources in the basin. The objective of this study is to analyse the impact of meteorological drought on flows in the Lobo River catchment. Therefore, using the Normalized Precipitation and Evapotranspiration Index (SPEI) and the Drought Flow Index (SDI), the characteristics of droughts were studied. The results of this study show that meteorological droughts were more frequent than hydrological droughts in the Lobo River watershed. However, the hydrological drought was longer and more intense than the meteorological drought. The greater relationship between meteorological and hydrological drought was observed at the Daloa and Vavoua station (0.43 < r < 0.50) compared to the Zuenoula station (r < 0.5). In addition, there was a resumption of precipitation and runoff between 2007 and 2013 in the basin. The study of these climatic trends would be very useful in the choice of management and adaptation policies for water resources management.展开更多
Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at...Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at a local scale is vital.In this study,we assessed the efficiency of seven downscaled Global Climate Models(GCMs)provided by the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP),and investigated the impacts of climate change on future meteorological drought using Standard Precipitation Index(SPI)in the Karoun River Basin(KRB)of southwestern Iran under two Representative Concentration Pathway(RCP)emission scenarios,i.e.,RCP4.5 and RCP8.5.The results demonstrated that SPI estimated based on the Meteorological Research Institute Coupled Global Climate Model version 3(MRI-CGCM3)is consistent with the one estimated by synoptic stations during the historical period(1990-2005).The root mean square error(RMSE)value is less than 0.75 in 77%of the synoptic stations.GCMs have high uncertainty in most synoptic stations except those located in the plain.Using the average of a few GCMs to improve performance and reduce uncertainty is suggested by the results.The results revealed that with the areas affected by wetness decreasing in the KRB,drought frequency in the North KRB is likely to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios.At the seasonal scale,the decreasing trend for SPI in spring,summer,and winter shows a drought tendency in this region.The climate-induced drought hazard can have vast consequences,especially in agriculture and rural livelihoods.Accordingly,an increasing trend in drought during the growing seasons under RCP scenarios is vital for water managers and farmers to adopt strategies to reduce the damages.The results of this study are of great value for formulating sustainable water resources management plans affected by climate change.展开更多
Drought is one of the main natural disasters that cause economic loss in the basins of international rivers such as Nujiang and Lancang rivers. Based on the monthly precipitation and temperature data of 31 meteorologi...Drought is one of the main natural disasters that cause economic loss in the basins of international rivers such as Nujiang and Lancang rivers. Based on the monthly precipitation and temperature data of 31 meteorological stations in Nujiang and Lancang river basins in Yunnan Province during 1965-2013, the standardized precipitation evapotranspiration index(SPEI) in each of the two bio-climate zones was calculated. In addition, the drought process in annual, seasonal and monthly scale was analyzed respectively to reveal the spatial and temporal characteristics and the intensity variation of meteorological drought in Nujiang and Lancang river basins in Yunnan Province. The results showed that there was a significant increasing trend in seasonal(especially winter's) and monthly drought since the late 1970 s; the drought occurred in the two bio-climate zones showed no obvious spatial distinction, and it was synchronized with that occurred throughout Yunnan Province; and in the recent 50 years, the significant increase of drought in the study area may be attributed to the significant rise in temperature, rather than the slight decline of the precipitation.展开更多
Cedar forests area in northeastern Algeria (Aures) is decreasing by the massive tree mortality. In some localities more than 95% of the trees have recently died (e.g. Boumerzoug in Belezma National Park). Three re...Cedar forests area in northeastern Algeria (Aures) is decreasing by the massive tree mortality. In some localities more than 95% of the trees have recently died (e.g. Boumerzoug in Belezma National Park). Three reported episodes of massive tree mortality in 1880, 1980, and 2000 were attributed to drought at least as the triggering factor. Our main objective was to reconstruct drought events that could be linked to Atlas cedar tree mortality using tree-ring series. We developed a Cedrus atlantica tree-ring width chronology in Chelia with a reliable period spanning from 1502 to 2008. Based on the relationship between chronology indices and instrumental precipitation data, we reconstructed total October-June precipitation. Dry events were identified using a threshold of 90% of the October-June mean instrumental precipitation. The unique drought event of 3-year period (1877-1879) could explain the tree mortality occurred in 1880. In terms of severity and frequency of droughts, the later half of the twentieth century seems to be the worst and may be responsible for the recent tree mortality.展开更多
Global climate change, temperature rise and some kinds of extreme meteorological disaster, such as the drought, threaten the development of the natural ecosystem and human society. Forecasting in drought is an importa...Global climate change, temperature rise and some kinds of extreme meteorological disaster, such as the drought, threaten the development of the natural ecosystem and human society. Forecasting in drought is an important step toward developing a disaster mitigation system. In this study, we utilized the statistical, autoregressive integrated moving average (ARIMA) model to predict drought conditions based on the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in a major tributary in the lower reaches of Nu River. We employed data from 2001 to 2010 to fit the model and data from 2011 to 2013 for model validation. The results showed that the coefficients of determination (R<sup>2</sup>) was over 0.85 in each index series, and the root-mean-square error and mean absolute error were low, implying that the ARIMA model is effective and adequate for this region.展开更多
[ Ob.jeetive] The research aimed to analyze characteristics of the meteorological drought in central Yunnan. [ Method] Based on precipi- tation data at 43 meteorological stations of the central Yunnan, SPI at year sca...[ Ob.jeetive] The research aimed to analyze characteristics of the meteorological drought in central Yunnan. [ Method] Based on precipi- tation data at 43 meteorological stations of the central Yunnan, SPI at year scale in each station was calculated, and occurrence frequency of the drought at different grades was conducted statistics. Finally, spline curve interpolation method was used to acquire spatial distribution characteristics of the occurrence frequencies for various-level droughts in central Yunnan. [ Result] The drought has experienced the following four stages since 1960 in central Yunnan. Firstly, SPI had obvious decrease trend, and drought had the tendency to become severe in the 1970s. Secondly, in the 1960s and the 1980s, although variation of the SPI was large, we didn't find any distinct changing trend. Thirdly, SPI showed an evident increasing trend from the late 1980s to 2000. That was to say, central Yunnan experienced a wet period within those years. Lastly, the drought became severe from 2001 to 2009. Honghe, Yuanjiang, Binchuan, Luquan and Zhanyi tended to suffer from the medium drought; Kunming, Chenggong, Qujing, northeast Chuxiong, Dali, east Yangbi and central Yuxi tended to suffer from the severe drought; Zhanyi, Binchuan, west Dayao, Xiangyun, north Qujing, Anning and northwest Kunming tended to suffer from the extreme drought. [ Conclusion] The research provided theoreticai basis for drought prevention and control in the zone.展开更多
This study presents the work commenced in northern Thailand on spatial and temporal variability of rainfall. Thirty years (1988-2017) rainfall data of eight meteorological stations were used for assessing temporal var...This study presents the work commenced in northern Thailand on spatial and temporal variability of rainfall. Thirty years (1988-2017) rainfall data of eight meteorological stations were used for assessing temporal variability and trend analysis. The results showed decreasing trend in rainfall from its first half of the observed study period (1988-2002) to last half of the time period (2003-2017) in total average annual as well as monsoonal average rainfall by 14.92% and 15.50% respectively. It was predicted from linear regression results that by 2030 the average annual and monsoonal rainfall will drop by 35% and 34.10% respectively. All stations showed negative trend except Fakara met-station in annual rainfall. In the seasonal trend analysis, the results showed decreasing trend almost in all met-stations. Mann-Kendall trend test was applied to assess the trend. All met-stations show significant negative trend. To assess drought in the study area, Standardized Precipitation Index (SPI) was applied to 12-month temporal time period. The results predicted meteorological drought in the near future. The spatial distribution of rainfall presented changing phenomena in average annual, monsoonal, winter, and summer seasons in both analyzed periods.展开更多
Drought is a common natural disaster worldwide, with varying durations, severity levels, and spatial extents. This study aimed to model the spatiotemporal variation of meteorological drought events in the Gabiley regi...Drought is a common natural disaster worldwide, with varying durations, severity levels, and spatial extents. This study aimed to model the spatiotemporal variation of meteorological drought events in the Gabiley region of Somaliland. The study utilized primary data collected from the meteorological station in Gabiley and CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data to develop the standardized precipitation index (SPI) at a 3-month timescale. The results of the study revealed that the study area was characterized by drought and received inadequate precipitation, resulting in catastrophic droughts that negatively impacted the socioeconomic situation of the community. Mild-to-severe meteorological drought events occurred every two to three years, with the most severe droughts occurring in 1998, 2002, 2009, 2015, and 2017. Specifically, the year 2015 experienced the most severe meteorological drought in the region during the studied period. The predominant type of drought was a mild year in the study area. The SPI was found to potentially identify meteorological drought, making it a useful tool for policymakers as they develop drought adaptation and mitigation policies. This study provides valuable information that can benefit local authorities and policymakers in creating drought mitigation and adaptation strategies in the Gabiley region.展开更多
Significant increases of heavy precipitation and decreases of light precipitation have been reported over widespread regions of the globe. Global warming and effects of anthropogenic aerosols have both been proposed a...Significant increases of heavy precipitation and decreases of light precipitation have been reported over widespread regions of the globe. Global warming and effects of anthropogenic aerosols have both been proposed as possible causes of these changes. We examine data from urban and rural meteorological stations in eastern China (1955-2011) and compare them with Global Precipitation Climatology Project (GPCP) data (1979-2007) and reanalysis data in various latitude zones to study changes in precipitation extremes. Significant decreases in light precipitation and increases in heavy precipitation are found at both rural and urban stations, as well as low latitudes over the ocean, while total precipitation shows little change. Characteristics of these changes and changes in the equatorial zone and other latitudes suggest that global warming rather than aerosol effects is the primary cause of the changes. In eastern China, increases of annual total dry days (28 days) and ) 10 consecutive dry days (36%) are due to the decrease in light precipitation days, thereby establishing a causal link among global warming, changes in precipitation extremes, and higher meteorological risk of floods and droughts. Further, results derived from the GPCP data and reanalysis data suggest that the causal link exists over widespread regions of the globe.展开更多
Reliable monitoring and thorough spatiotemporal prediction of meteorological drought are crucial for early warning and decision-making regarding drought-related disasters.The utilisation of multiscale methods is effec...Reliable monitoring and thorough spatiotemporal prediction of meteorological drought are crucial for early warning and decision-making regarding drought-related disasters.The utilisation of multiscale methods is effective for a comprehensive evaluation of drought occurrence and progression,given the complex nature of meteorological drought.Nevertheless,the nonlinear spatiotemporal features of meteorological droughts,influenced by various climatological,physical and environmental factors,pose significant challenges to integrated prediction that considers multiple indicators and time scales.To address these constraints,we introduce an innovative deep learning framework based on the shifted window transformer,designed for executing spatiotemporal prediction of meteorological drought across multiple scales.We formulate four prediction indicators using the standardized precipitation index and the standard precipitation evaporation index as core methods for drought definition using the ERA5 reanalysis dataset.These indicators span time scales of approximately 30 d and one season.Short-term indicators capture more anomalous variations,whereas long-term indicators attain comparatively higher accuracy in predicting future trends.We focus on the East Asian region,notable for its diverse climate conditions and intricate terrains,to validate the model's efficacy in addressing the complexities of nonlinear spatiotemporal prediction.The model's performance is evaluated from diverse spatiotemporal viewpoints,and practical application values are analysed by representative drought events.Experimental results substantiate the effectiveness of our proposed model in providing accurate multiscale predictions and capturing the spatiotemporal evolution characteristics of drought.Each of the four drought indicators accurately delineates specific facets of the meteorological drought trend.Moreover,three representative drought events,namely flash drought,sustained drought and severe drought,underscore the significance of selecting appropriate prediction indicators to effectively denote different types of drought events.This study provides methodological and technological support for using a deep learning approach in meteorological drought prediction.Such findings also demonstrate prediction issues related to natural hazards in regions with scarce observational data,complex topography and diverse microclimate systems.展开更多
Drought is one of the most serious and extensive natural hazards in the world.Subject to monsoon climate variability,China is particularly influenced by drought hazards,especially meteorological drought.Based on a com...Drought is one of the most serious and extensive natural hazards in the world.Subject to monsoon climate variability,China is particularly influenced by drought hazards,especially meteorological drought.Based on a comprehensive understanding of the current status of international drought research,this paper systematically reviews the history and achievements of drought research in China since the founding of the People’s Republic of China,from four main perspectives:characteristics and spatiotemporal distribution of historical and recent drought events,drought formation mechanism and change trend,drought hazard risk,and the particular flash drought.The progress and problems of drought research in China are analyzed and future prospects are proposed,with emphasis on the multi-factor synergetic effect for drought formation;the effect of land-atmosphere interaction;identification,monitoring,and prediction of flash drought;categorization of drought and characteristics among various types of drought;the agricultural drought development;drought response to climate warming;and assessment of drought hazard risks.It is suggested that strengthening scientific experimental research on drought in China is imperative.The present review is conducive to strategic planning of drought research and application,and may facilitate further development of drought research in China.展开更多
An objective identifi cation technique for regional extreme events (OITREE) and the daily composite-drought index (CI) at 101 stations in Southwest China (including Sichuan, Yunnan, Guizhou, and Chongqing) are u...An objective identifi cation technique for regional extreme events (OITREE) and the daily composite-drought index (CI) at 101 stations in Southwest China (including Sichuan, Yunnan, Guizhou, and Chongqing) are used to detect regional meteorological drought events between 1960 and 2010. Values of the parameters of the OITREE method are determined. A total of 87 drought events are identifi ed, including 9 extreme events. The 2009-2010 drought is the most serious in Southwest China during the past 50 years. The regional meteorological drought events during 1960-2010 generally last for 10-80 days, with the longest being 231 days. Droughts are more common from November to next April, and less common in the remaining months. Droughts occur more often and with greater intensity in Yunnan and southern Sichuan than in other parts of Southwest China. Strong (extreme and severe) regional meteorological drought events can be divided into fi ve types. The southern type has occurred most frequently, and Yunnan is the area most frequently stricken by extreme and severe drought events. The regional meteorological drought events in Southwest China have increased in both frequency and intensity over the study period, and the main reason appears to be a signifi cant decrease in precipitation over this region, but a simultaneous increase in temperature also contributes.展开更多
基金supported by the National Natural Science Foundation of China(42071285,42371297)the Key R&D Program Projects in Shaanxi Province of China(2022SF-382)the Fundamental Research Funds for the Central Universities(GK202302002).
文摘Severe soil erosion and drought are the two main factors affecting the ecological security of the Loess Plateau,China.Investigating the influence of drought on soil conservation service is of great importance to regional environmental protection and sustainable development.However,there is little research on the coupling relationship between them.In this study,focusing on the Jinghe River Basin,China as a case study,we conducted a quantitative evaluation on meteorological,hydrological,and agricultural droughts(represented by the Standardized Precipitation Index(SPI),Standardized Runoff Index(SRI),and Standardized Soil Moisture Index(SSMI),respectively)using the Variable Infiltration Capacity(VIC)model,and quantified the soil conservation service using the Revised Universal Soil Loss Equation(RUSLE)in the historical period(2000-2019)and future period(2026-2060)under two Representative Concentration Pathways(RCPs)(RCP4.5 and RCP8.5).We further examined the influence of the three types of drought on soil conservation service at annual and seasonal scales.The NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP)dataset was used to predict and model the hydrometeorological elements in the future period under the RCP4.5 and RCP8.5 scenarios.The results showed that in the historical period,annual-scale meteorological drought exhibited the highest intensity,while seasonal-scale drought was generally weakest in autumn and most severe in summer.Drought intensity of all three types of drought will increase over the next 40 years,with a greater increase under the RCP4.5 scenario than under the RCP8.5 scenario.Furthermore,the intra-annual variation in the drought intensity of the three types of drought becomes smaller under the two future scenarios relative to the historical period(2000-2019).Soil conservation service exhibits a distribution pattern characterized by high levels in the southwest and southeast and lower levels in the north,and this pattern has remained consistent both in the historical and future periods.Over the past 20 years,the intra-annual variation indicated peak soil conservation service in summer and lowest level in winter;the total soil conservation of the Jinghe River Basin displayed an upward trend,with the total soil conservation in 2019 being 1.14 times higher than that in 2000.The most substantial impact on soil conservation service arises from annual-scale meteorological drought,which remains consistent both in the historical and future periods.Additionally,at the seasonal scale,meteorological drought exerts the highest influence on soil conservation service in winter and autumn,particularly under the RCP4.5 and RCP8.5 scenarios.Compared to the historical period,the soil conservation service in the Jinghe River Basin will be significantly more affected by drought in the future period in terms of both the affected area and the magnitude of impact.This study conducted beneficial attempts to evaluate and predict the dynamic characteristics of watershed drought and soil conservation service,as well as the response of soil conservation service to different types of drought.Clarifying the interrelationship between the two is the foundation for achieving sustainable development in a relatively arid and severely eroded area such as the Jinghe River Basin.
基金Under the auspices of National Natural Science Foundation of China(No.41171403,41301586)China Postdoctoral Science Foundation(No.2013M540599,2014T70731)Program for New Century Excellent Talents in University(No.NCET-08-0057)
文摘Under global climate change, drought has become one of the most serious natural hazards, affecting the ecological environment and human life. Drought can be categorized as meteorological, agricultural, hydrological or socio-economic drought. Among the different categories of drought, hydrological drought, especially streamflow drought, has been given more attention by local governments, researchers and the public in recent years. Identifying the occurrence of streamflow drought and issuing early warning can provide timely information for effective water resources management. In this study, streamflow drought is detected by using the Standardized Runoff Index, whereas meteorological drought is detected by the Standardized Precipitation Index. Comparative analyses of frequency, magnitude, onset and duration are conducted to identify the impact of meteorological drought on streamflow drought. This study focuses on the Jinghe River Basin in Northwest China, mainly providing the following findings. 1) Eleven meteorological droughts and six streamflow droughts were indicated during 1970 and 1990 after pooling using Inter-event time and volume Criterion method. 2) Streamflow drought in the Jinghe River Basin lagged meteorological drought for about 127 days. 3) The frequency of streamflow drought in Jinghe River Basin was less than meteorological drought. However, the average duration of streamflow drought is longer. 4) The magnitude of streamflow drought is greater than meteorological drought. These results not only play an important theoretical role in understanding relationships between different drought categories, but also have practical implications for streamflow drought mitigation and regional water resources management.
基金supported by the Faculty of Engineering, National Autonomous University of Mexico
文摘Meteorological drought has been an inevitable natural disaster throughout Mexican history and the northern and northwestern parts of Mexico(i.e., the studied area), where the mean annual precipitation(MAP) is less than 500 mm, have suffered even more from droughts in the past. The aim of this study was to conduct a meteorological drought analysis of the available MAP data(1950–2013) from 649 meteorological stations selected from the studied area and to predict the drought features under the different IPCC-prescribed climate change scenarios. To determine the long-term drought features, we collected 1×10~4 synthetic samples using the periodic autoregressive moving average(PARMA) model for each rainfall series. The simulations first consider the present prevailing precipitation conditions(i.e., the average from 1950 to 2013) and then the precipitation anomalies under IPCC-prescribed RCP 4.5 scenario and RCP 8.5 scenario. The results indicated that the climate changes under the prescribed scenarios would significantly increase the duration and intensity of droughts. The most severe impacts may occur in the central plateau and in the Baja California Peninsula. Thus, it will be necessary to establish adequate protective measures for the sustainable management of water resources in these regions.
基金supported by the National Natural Science Foundation of China [grant numbers 4208810141901024+1 种基金42175168]the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) [grant number 311021009]。
文摘Quantifying the changes and propagation of drought is of great importance for regional eco-environmental safety and water-related disaster management under global warming.In this study,phase 6 of the Coupled Model Intercomparison Project was employed to examine future meteorological(Standardized Precipitation Index,SPI,and Standardized Precipitation-Evapotranspiration Index,SPEI),hydrological(Standardized Runoff Index,SRI),and agricultural(Standardized Soil moisture Index,SSI) drought under two warming scenarios(SSP2-4.5 and SSP5-8.5).The results show that,across the globe,different types of drought events generally exhibit a larger spatial extent,longer duration,and greater severity from 1901 to 2100,with SPEI drought experiencing the greatest increases.Although SRI and SSI drought are expected to be more intensifying than SPI drought,the models show higher consistency in projections of SPI changes.Regions with robust drying trends include the southwestern United States,Amazon Basin,Mediterranean,southern Africa,southern Asia,and Australia.It is also found that meteorological drought shows a higher correlation with hydrological drought than with agricultural drought,especially in warm and humid regions.Additionally,the maximum correlation between meteorological and hydrological drought tends to be achieved at a short time scale.These findings have important implications for drought monitoring and policy interventions for water resource management under a changing climate.
文摘Drought occurs in almost all climate zones and is characterized by prolonged water deficiency due to unbalanced demand and supply of water,persistent insufficient precipitation,lack of moisture,and high evapotranspiration.Drought caused by insufficient precipitation is a temporary and recurring meteorological event.Precipitation in semi-arid regions is different from that in other regions,ranging from 50 to 750 mm.In general,the semi-arid regions in the west and north of Iran received more precipitation than those in the east and south.The Terrestrial Climate(TerraClimate)data,including monthly precipitation,minimum temperature,maximum temperature,potential evapotranspiration,and the Palmer Drought Severity Index(PDSI)developed by the University of Idaho,were used in this study.The PDSI data was directly obtained from the Google Earth Engine platform.The Standardized Precipitation Index(SPI)and the Standardized Precipitation Evapotranspiration Index(SPEI)on two different scales were calculated in time series and also both SPI and SPEI were shown in spatial distribution maps.The result showed that normal conditions were a common occurrence in the semi-arid regions of Iran over the majority of years from 2000 to 2020,according to a spatiotemporal study of the SPI at 3-month and 12-month time scales as well as the SPEI at 3-month and 12-month time scales.Moreover,the PDSI detected extreme dry years during 2000-2003 and in 2007,2014,and 2018.In many semi-arid regions of Iran,the SPI at 3-month time scale is higher than the SPEI at 3-month time scale in 2000,2008,2014,2015,and 2018.In general,this study concluded that the semi-arid regions underwent normal weather conditions from 2000 to 2020.In a way,moderate,severe,and extreme dry occurred with a lesser percentage,gradually decreasing.According to the PDSI,during 2000-2003 and 2007-2014,extreme dry struck practically all hot semi-arid regions of Iran.Several parts of the cold semi-arid regions,on the other hand,only experienced moderate to severe dry from 2000 to 2003,except for the eastern areas and wetter regions.The significance of this study is the determination of the spatiotemporal distribution of meteorological drought in semi-arid regions of Iran using strongly validated data from TerraClimate.
文摘Meteorological drought is a natural hazard that can occur under all climatic regimes. Monitoring the drought is a vital and important part of predicting and analyzing drought impacts. Because no single index can represent all facets of meteorological drought, we took a multi-index approach for drought monitoring in this study. We assessed the ability of eight precipitation-based drought indices(SPI(Standardized Precipitation Index), PNI(Percent of Normal Index), DI(Deciles index), EDI(Effective drought index), CZI(China-Z index), MCZI(Modified CZI), RAI(Rainfall Anomaly Index), and ZSI(Z-score Index)) calculated from the station-observed precipitation data and the Ag MERRA gridded precipitation data to assess historical drought events during the period 1987–2010 for the Kashafrood Basin of Iran. We also presented the Degree of Dryness Index(DDI) for comparing the intensities of different drought categories in each year of the study period(1987–2010). In general, the correlations among drought indices calculated from the Ag MERRA precipitation data were higher than those derived from the station-observed precipitation data. All indices indicated the most severe droughts for the study period occurred in 2001 and 2008. Regardless of data input source, SPI, PNI, and DI were highly inter-correlated(R^2=0.99). Furthermore, the higher correlations(R^2=0.99) were also found between CZI and MCZI, and between ZSI and RAI. All indices were able to track drought intensity, but EDI and RAI showed higher DDI values compared with the other indices. Based on the strong correlation among drought indices derived from the Ag MERRA precipitation data and from the station-observed precipitation data, we suggest that the Ag MERRA precipitation data can be accepted to fill the gaps existed in the station-observed precipitation data in future studies in Iran. In addition, if tested by station-observed precipitation data, the Ag MERRA precipitation data may be used for the data-lacking areas.
基金supported by the National Natural Science Foundation of China (41101038)the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2021nkms03)
文摘In the context of global warming,drought events occur frequently.In order to better understanding the process and mechanism of drought occurrence and evolution,scholars have dedicated much attention on drought propagation,mainly focusing on drought propagation time and propagation probability.However,there are relatively few studies on the sensitivities of drought propagation to seasons and drought levels.Therefore,we took the Heihe River Basin(HRB)of Northwest China as the case study area to quantify the propagation time and propagation probability from meteorological drought to agricultural drought during the period of 1981–2020,and subsequently explore their sensitivities to seasons(irrigation and non-irrigation seasons)and drought levels.The correlation coefficient method and Copula-based interval conditional probability model were employed to determine the drought propagation time and propagation probability.The results determined the average drought propagation time as 8 months in the whole basin,which was reduced by 2 months(i.e.,6 months)on average during the irrigation season and prolonged by 2 months(i.e.,10 months)during the non-irrigation season.Propagation probability was sensitive to both seasons and drought levels,and the sensitivities had noticeable spatial differences in the whole basin.The propagation probability of agricultural drought at different levels generally increased with the meteorological drought levels for the upstream,midstream,and southern downstream regions of the HRB.Lesser agricultural droughts were more likely to be triggered during the irrigation season,while severer agricultural droughts were occurred mostly during the non-irrigation season.The research results are helpful to understand the characteristics of drought propagation and provide a scientific basis for the prevention and control of droughts.This study is of great significance for the rational planning of local water resources and maintaining good ecological environment in the HRB.
文摘The hydrographic eastern Mediterranean Basin of Turkey is a drought sensitive area.The basin is an important agricultural area and it is necessary to determine the extent of extreme regional climatic changes as they occur in this basin.Pearson’s correlation coefficient was used to show the correlation between standardized precipitation index(SPI)and standardized streamflow index(SSI)values on different time scales.Data from five meteorological stations and seven stream gauging stations in four sub-basins of the eastern Mediterranean Basin were analyzed over the period from 1967 to 2017.The correlation between SSI and SPI indicated that in response to meteorological drought,hydrological drought experiences a one-year delay then occurs in the following year.This is more evident at all stations from the mid-1990 s.The main factor causing hydrological drought is prolonged low precipitation or the presence of a particularly dry year.Results showed that over a long period(12 months),hydrological drought is longer and more severe in the upper part than the lower part of the sub-basins.According to SPI-12 values,an uninterrupted drought period is observed from 2002–2003 to 2008–2009.Results indicated that among the drought events,moderate drought is the most common on all timescales in all sub-basins during the past 51 years.Long-term dry periods with moderate and severe droughts are observed for up to 10 years or more since the late 1990 s,especially in the upper part of the sub-basins.As precipitation increases in late autumn and early winter,the stream flow also increases and thus the highest and most positive correlation values(0.26–0.54)are found in January.Correlation values(ranging between–0.11 and–0.01)are weaker and negative in summer and autumn due to low rainfall.This is more evident at all stations in September.The relation between hydrological and meteorological droughts is more evident,with the correlation values above 0.50 on longer timescales(12-and 24-months).The results presented in this study allow an understanding of the characteristics of drought events and are instructive for overcoming drought.This will facilitate the development of strategies for the appropriate management of water resources in the eastern Mediterranean Basin,which has a high agricultural potential.
文摘The management of water resources in watersheds has become increasingly difficult in recent years due to the frequency and intensity of drought sequences. The Lobo River catchment, like most tropical regions, has experienced alternating wet and dry periods. These drought periods have a significant impact on the availability of water resources in the basin. The objective of this study is to analyse the impact of meteorological drought on flows in the Lobo River catchment. Therefore, using the Normalized Precipitation and Evapotranspiration Index (SPEI) and the Drought Flow Index (SDI), the characteristics of droughts were studied. The results of this study show that meteorological droughts were more frequent than hydrological droughts in the Lobo River watershed. However, the hydrological drought was longer and more intense than the meteorological drought. The greater relationship between meteorological and hydrological drought was observed at the Daloa and Vavoua station (0.43 < r < 0.50) compared to the Zuenoula station (r < 0.5). In addition, there was a resumption of precipitation and runoff between 2007 and 2013 in the basin. The study of these climatic trends would be very useful in the choice of management and adaptation policies for water resources management.
文摘Investigation of the climate change effects on drought is required to develop management strategies for minimizing adverse social and economic impacts.Therefore,studying the future meteorological drought conditions at a local scale is vital.In this study,we assessed the efficiency of seven downscaled Global Climate Models(GCMs)provided by the NASA Earth Exchange Global Daily Downscaled Projections(NEX-GDDP),and investigated the impacts of climate change on future meteorological drought using Standard Precipitation Index(SPI)in the Karoun River Basin(KRB)of southwestern Iran under two Representative Concentration Pathway(RCP)emission scenarios,i.e.,RCP4.5 and RCP8.5.The results demonstrated that SPI estimated based on the Meteorological Research Institute Coupled Global Climate Model version 3(MRI-CGCM3)is consistent with the one estimated by synoptic stations during the historical period(1990-2005).The root mean square error(RMSE)value is less than 0.75 in 77%of the synoptic stations.GCMs have high uncertainty in most synoptic stations except those located in the plain.Using the average of a few GCMs to improve performance and reduce uncertainty is suggested by the results.The results revealed that with the areas affected by wetness decreasing in the KRB,drought frequency in the North KRB is likely to increase at the end of the 21st century under RCP4.5 and RCP8.5 scenarios.At the seasonal scale,the decreasing trend for SPI in spring,summer,and winter shows a drought tendency in this region.The climate-induced drought hazard can have vast consequences,especially in agriculture and rural livelihoods.Accordingly,an increasing trend in drought during the growing seasons under RCP scenarios is vital for water managers and farmers to adopt strategies to reduce the damages.The results of this study are of great value for formulating sustainable water resources management plans affected by climate change.
基金Sponsored by Project of Baoshan Municipal Science and Technology Bureau"Study on Ecological Security Pattern of Baoshan City Based on ANNs"
文摘Drought is one of the main natural disasters that cause economic loss in the basins of international rivers such as Nujiang and Lancang rivers. Based on the monthly precipitation and temperature data of 31 meteorological stations in Nujiang and Lancang river basins in Yunnan Province during 1965-2013, the standardized precipitation evapotranspiration index(SPEI) in each of the two bio-climate zones was calculated. In addition, the drought process in annual, seasonal and monthly scale was analyzed respectively to reveal the spatial and temporal characteristics and the intensity variation of meteorological drought in Nujiang and Lancang river basins in Yunnan Province. The results showed that there was a significant increasing trend in seasonal(especially winter's) and monthly drought since the late 1970 s; the drought occurred in the two bio-climate zones showed no obvious spatial distinction, and it was synchronized with that occurred throughout Yunnan Province; and in the recent 50 years, the significant increase of drought in the study area may be attributed to the significant rise in temperature, rather than the slight decline of the precipitation.
文摘Cedar forests area in northeastern Algeria (Aures) is decreasing by the massive tree mortality. In some localities more than 95% of the trees have recently died (e.g. Boumerzoug in Belezma National Park). Three reported episodes of massive tree mortality in 1880, 1980, and 2000 were attributed to drought at least as the triggering factor. Our main objective was to reconstruct drought events that could be linked to Atlas cedar tree mortality using tree-ring series. We developed a Cedrus atlantica tree-ring width chronology in Chelia with a reliable period spanning from 1502 to 2008. Based on the relationship between chronology indices and instrumental precipitation data, we reconstructed total October-June precipitation. Dry events were identified using a threshold of 90% of the October-June mean instrumental precipitation. The unique drought event of 3-year period (1877-1879) could explain the tree mortality occurred in 1880. In terms of severity and frequency of droughts, the later half of the twentieth century seems to be the worst and may be responsible for the recent tree mortality.
文摘Global climate change, temperature rise and some kinds of extreme meteorological disaster, such as the drought, threaten the development of the natural ecosystem and human society. Forecasting in drought is an important step toward developing a disaster mitigation system. In this study, we utilized the statistical, autoregressive integrated moving average (ARIMA) model to predict drought conditions based on the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in a major tributary in the lower reaches of Nu River. We employed data from 2001 to 2010 to fit the model and data from 2011 to 2013 for model validation. The results showed that the coefficients of determination (R<sup>2</sup>) was over 0.85 in each index series, and the root-mean-square error and mean absolute error were low, implying that the ARIMA model is effective and adequate for this region.
基金Supported by Special Item of Public Welfare Industry,Ministry of Water Resources (201001044) Special Item of Social Undertakings Development, Yunnan Science and Technology Plan Item (2010CA013)
文摘[ Ob.jeetive] The research aimed to analyze characteristics of the meteorological drought in central Yunnan. [ Method] Based on precipi- tation data at 43 meteorological stations of the central Yunnan, SPI at year scale in each station was calculated, and occurrence frequency of the drought at different grades was conducted statistics. Finally, spline curve interpolation method was used to acquire spatial distribution characteristics of the occurrence frequencies for various-level droughts in central Yunnan. [ Result] The drought has experienced the following four stages since 1960 in central Yunnan. Firstly, SPI had obvious decrease trend, and drought had the tendency to become severe in the 1970s. Secondly, in the 1960s and the 1980s, although variation of the SPI was large, we didn't find any distinct changing trend. Thirdly, SPI showed an evident increasing trend from the late 1980s to 2000. That was to say, central Yunnan experienced a wet period within those years. Lastly, the drought became severe from 2001 to 2009. Honghe, Yuanjiang, Binchuan, Luquan and Zhanyi tended to suffer from the medium drought; Kunming, Chenggong, Qujing, northeast Chuxiong, Dali, east Yangbi and central Yuxi tended to suffer from the severe drought; Zhanyi, Binchuan, west Dayao, Xiangyun, north Qujing, Anning and northwest Kunming tended to suffer from the extreme drought. [ Conclusion] The research provided theoreticai basis for drought prevention and control in the zone.
文摘This study presents the work commenced in northern Thailand on spatial and temporal variability of rainfall. Thirty years (1988-2017) rainfall data of eight meteorological stations were used for assessing temporal variability and trend analysis. The results showed decreasing trend in rainfall from its first half of the observed study period (1988-2002) to last half of the time period (2003-2017) in total average annual as well as monsoonal average rainfall by 14.92% and 15.50% respectively. It was predicted from linear regression results that by 2030 the average annual and monsoonal rainfall will drop by 35% and 34.10% respectively. All stations showed negative trend except Fakara met-station in annual rainfall. In the seasonal trend analysis, the results showed decreasing trend almost in all met-stations. Mann-Kendall trend test was applied to assess the trend. All met-stations show significant negative trend. To assess drought in the study area, Standardized Precipitation Index (SPI) was applied to 12-month temporal time period. The results predicted meteorological drought in the near future. The spatial distribution of rainfall presented changing phenomena in average annual, monsoonal, winter, and summer seasons in both analyzed periods.
文摘Drought is a common natural disaster worldwide, with varying durations, severity levels, and spatial extents. This study aimed to model the spatiotemporal variation of meteorological drought events in the Gabiley region of Somaliland. The study utilized primary data collected from the meteorological station in Gabiley and CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data to develop the standardized precipitation index (SPI) at a 3-month timescale. The results of the study revealed that the study area was characterized by drought and received inadequate precipitation, resulting in catastrophic droughts that negatively impacted the socioeconomic situation of the community. Mild-to-severe meteorological drought events occurred every two to three years, with the most severe droughts occurring in 1998, 2002, 2009, 2015, and 2017. Specifically, the year 2015 experienced the most severe meteorological drought in the region during the studied period. The predominant type of drought was a mild year in the study area. The SPI was found to potentially identify meteorological drought, making it a useful tool for policymakers as they develop drought adaptation and mitigation policies. This study provides valuable information that can benefit local authorities and policymakers in creating drought mitigation and adaptation strategies in the Gabiley region.
基金supported in part by the Chinese Academy of Sciences Strategic Priority Research Program (Grant No. XDB05010500)the Clean Air Research Project in China (Grant No. 201509001)+3 种基金the Sustainable Development Research Project of Academia Sinica, Consortium for Climate Change Studyfunded by the National Science Council (Grant No. 100-2119-M-001-029-MY5)sponsored by the Collaborative Innovation Center for Regional Environmental Qualitythe State Key Joint Laboratory of Environmental Simulation and Pollution Control, Peking University
文摘Significant increases of heavy precipitation and decreases of light precipitation have been reported over widespread regions of the globe. Global warming and effects of anthropogenic aerosols have both been proposed as possible causes of these changes. We examine data from urban and rural meteorological stations in eastern China (1955-2011) and compare them with Global Precipitation Climatology Project (GPCP) data (1979-2007) and reanalysis data in various latitude zones to study changes in precipitation extremes. Significant decreases in light precipitation and increases in heavy precipitation are found at both rural and urban stations, as well as low latitudes over the ocean, while total precipitation shows little change. Characteristics of these changes and changes in the equatorial zone and other latitudes suggest that global warming rather than aerosol effects is the primary cause of the changes. In eastern China, increases of annual total dry days (28 days) and ) 10 consecutive dry days (36%) are due to the decrease in light precipitation days, thereby establishing a causal link among global warming, changes in precipitation extremes, and higher meteorological risk of floods and droughts. Further, results derived from the GPCP data and reanalysis data suggest that the causal link exists over widespread regions of the globe.
基金This work is supported by the National Key Research and Development Program of China(2022YFE0195900,2021YFC3101600,2020YFA0607900,and 2020YFA0608000)the National Natural Science Foundation of China(42125503 and 42075137).
文摘Reliable monitoring and thorough spatiotemporal prediction of meteorological drought are crucial for early warning and decision-making regarding drought-related disasters.The utilisation of multiscale methods is effective for a comprehensive evaluation of drought occurrence and progression,given the complex nature of meteorological drought.Nevertheless,the nonlinear spatiotemporal features of meteorological droughts,influenced by various climatological,physical and environmental factors,pose significant challenges to integrated prediction that considers multiple indicators and time scales.To address these constraints,we introduce an innovative deep learning framework based on the shifted window transformer,designed for executing spatiotemporal prediction of meteorological drought across multiple scales.We formulate four prediction indicators using the standardized precipitation index and the standard precipitation evaporation index as core methods for drought definition using the ERA5 reanalysis dataset.These indicators span time scales of approximately 30 d and one season.Short-term indicators capture more anomalous variations,whereas long-term indicators attain comparatively higher accuracy in predicting future trends.We focus on the East Asian region,notable for its diverse climate conditions and intricate terrains,to validate the model's efficacy in addressing the complexities of nonlinear spatiotemporal prediction.The model's performance is evaluated from diverse spatiotemporal viewpoints,and practical application values are analysed by representative drought events.Experimental results substantiate the effectiveness of our proposed model in providing accurate multiscale predictions and capturing the spatiotemporal evolution characteristics of drought.Each of the four drought indicators accurately delineates specific facets of the meteorological drought trend.Moreover,three representative drought events,namely flash drought,sustained drought and severe drought,underscore the significance of selecting appropriate prediction indicators to effectively denote different types of drought events.This study provides methodological and technological support for using a deep learning approach in meteorological drought prediction.Such findings also demonstrate prediction issues related to natural hazards in regions with scarce observational data,complex topography and diverse microclimate systems.
基金Supported by the National Natural Science Foundation of China(41630426 and 41575149)China Meteorological Administration Special Public Welfare Research Fund(GYHY201506001-6)。
文摘Drought is one of the most serious and extensive natural hazards in the world.Subject to monsoon climate variability,China is particularly influenced by drought hazards,especially meteorological drought.Based on a comprehensive understanding of the current status of international drought research,this paper systematically reviews the history and achievements of drought research in China since the founding of the People’s Republic of China,from four main perspectives:characteristics and spatiotemporal distribution of historical and recent drought events,drought formation mechanism and change trend,drought hazard risk,and the particular flash drought.The progress and problems of drought research in China are analyzed and future prospects are proposed,with emphasis on the multi-factor synergetic effect for drought formation;the effect of land-atmosphere interaction;identification,monitoring,and prediction of flash drought;categorization of drought and characteristics among various types of drought;the agricultural drought development;drought response to climate warming;and assessment of drought hazard risks.It is suggested that strengthening scientific experimental research on drought in China is imperative.The present review is conducive to strategic planning of drought research and application,and may facilitate further development of drought research in China.
基金Supported by the National Natural Science Foundation of China(41175075)Climate Change Special Fund of the China Meteorological Administration(CCSF201333)
文摘An objective identifi cation technique for regional extreme events (OITREE) and the daily composite-drought index (CI) at 101 stations in Southwest China (including Sichuan, Yunnan, Guizhou, and Chongqing) are used to detect regional meteorological drought events between 1960 and 2010. Values of the parameters of the OITREE method are determined. A total of 87 drought events are identifi ed, including 9 extreme events. The 2009-2010 drought is the most serious in Southwest China during the past 50 years. The regional meteorological drought events during 1960-2010 generally last for 10-80 days, with the longest being 231 days. Droughts are more common from November to next April, and less common in the remaining months. Droughts occur more often and with greater intensity in Yunnan and southern Sichuan than in other parts of Southwest China. Strong (extreme and severe) regional meteorological drought events can be divided into fi ve types. The southern type has occurred most frequently, and Yunnan is the area most frequently stricken by extreme and severe drought events. The regional meteorological drought events in Southwest China have increased in both frequency and intensity over the study period, and the main reason appears to be a signifi cant decrease in precipitation over this region, but a simultaneous increase in temperature also contributes.