Maize production in tropical Africa is often negatively affected by drought. The main objectives of the present study were to 1) analyze the impact of water stress on the agro-morphological performance of two varietie...Maize production in tropical Africa is often negatively affected by drought. The main objectives of the present study were to 1) analyze the impact of water stress on the agro-morphological performance of two varieties of Quality Protein Maize (QPM) compared to two normal maize varieties and 2) assess their adaptive response in contrasting water environments. Agro-morphological responses to water deficiency of maize (Zea mays L.) were assessed in controlled experiments using four maize varieties, two normal maize (Zm725 and Mus1) and two quality protein maize (Mudishi1 and Mudishi3) varieties. They were subjected to three water regimes (100%, 60%, 30% water retention capacity) at the beginning of the bloom stage, using a Fischer block design with four replications. Significant differences (p < 0.05) among varieties, water regimes and their interactions for plant growth and production parameters were observed. Reduction of water supply to plants caused changes in aerial and underground plant growth. Plant stem height, foliar expansion, and root system development characterizing vegetative growth showed variation in varietal response to water regimes. Mus1 (normal maize variety) was the best adapted to variations in water regimes because they developed an important root volume to adapt to the effects of water deficit while maintaining their morphological and productive characteristics.展开更多
文摘Maize production in tropical Africa is often negatively affected by drought. The main objectives of the present study were to 1) analyze the impact of water stress on the agro-morphological performance of two varieties of Quality Protein Maize (QPM) compared to two normal maize varieties and 2) assess their adaptive response in contrasting water environments. Agro-morphological responses to water deficiency of maize (Zea mays L.) were assessed in controlled experiments using four maize varieties, two normal maize (Zm725 and Mus1) and two quality protein maize (Mudishi1 and Mudishi3) varieties. They were subjected to three water regimes (100%, 60%, 30% water retention capacity) at the beginning of the bloom stage, using a Fischer block design with four replications. Significant differences (p < 0.05) among varieties, water regimes and their interactions for plant growth and production parameters were observed. Reduction of water supply to plants caused changes in aerial and underground plant growth. Plant stem height, foliar expansion, and root system development characterizing vegetative growth showed variation in varietal response to water regimes. Mus1 (normal maize variety) was the best adapted to variations in water regimes because they developed an important root volume to adapt to the effects of water deficit while maintaining their morphological and productive characteristics.