During recent decades, more frequent flood-drought alternations have been seen in China as a result of global climate change and intensive human activities, which have sig- nificant implications on water and food secu...During recent decades, more frequent flood-drought alternations have been seen in China as a result of global climate change and intensive human activities, which have sig- nificant implications on water and food security. To better identify the characteristics of flood-drought alternations, we proposed a modified dry-wet abrupt alternation index (DWAAI) and applied the new method in the middle and lower reaches of the Yangtze River Basin (YRB-ML) to analyze the long-term spatio-temporal characteristics of dry-wet abrupt alterna- tion (DWAA) events based on the daily precipitation observations at 75 rainfall stations in summer from 1960 to 2015. We found that the DWAA events have been spreading in the study area with higher frequency and intensity since 1960. In particular, the DWAA events mainly occurred in May and June in the northwest of the YRB-ML, including Hanjiang River Basin, the middle reaches of the YRB, north of Dongting Lake and northwest of Poyang Lake. In addition, we also analyzed the impact of El Nifio Southern Oscillation (ENSO) on DWAA events in the YRB-ML. The results showed that around 41.04% of DWAA events occurred during the declining stages of La Nifia or within the subsequent 8 months after La Nina, which implies that La Nina events could be predictive signals of DWAA events. Besides, significant negative correlations have been found between the modified DWAAI values of all the rainfall stations and the sea surface temperature anomalies in the Nino3.4 region within the 6 months prior to the DWAA events, particularly for the Poyang Lake watershed and the middle reaches of the YRB. This study has significant implications on the flood and drought control and water resources management in the YRB-ML under the challenge of future climate change.展开更多
The daily precipitation data at 720 sta- tions over China for the 1957―2003 period during summer (May―August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) pheno...The daily precipitation data at 720 sta- tions over China for the 1957―2003 period during summer (May―August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) phenomenon and a long-cycle droughts-floods abrupt alternation index (LDFAI) in the middle and lower reaches of the Yangtze River (MLYRV) is defined to quantify this phenomenon. The large-scale atmospheric circula- tion features in the anomalous LDFA years are ex- amined statistically. Results demonstrate that the summer droughts-to-floods (DTF) in the MLYRV usually accompany with the more southward western Pacific subtropical high (WPSH), negative vorticity, strong divergence, descending movements develop- ing and the weak moisture transport in the low level, the more southward position of the South Asia high (SAH) and the westerly jets in the high level during May―June, but during July―August it is in the other way, northward shift of the WPSH, positive vorticity, strong convergence, ascending movements and strong moisture transport in the low level, and the northward shift of the SAH and the westerly jets in the high level. While for the summer floods-to-droughts (FTD) in the MLYRV it often goes with the active coldair mass from the high latitude, positive vorticity, strong convergence, ascending movement develop- ing and the strong moisture transport in the low level, and the SAH over the Tibetan Plateau in the high level, but during July―August it is often connected with the negative vorticity, strong divergence, de- scending movements developing and the weak moisture transport in the low level, the remarkable northward shift of the WPSH, the SAH extending northeastward to North China and the easterly jets prevailing in the high level over the MLYRV. In addi- tion, the summer LDFA in the MLYRV is of significant relationship with the Southern Hemisphere annual mode and the Northern Hemisphere annual mode in the preceding February, which offers some predictive signals for the summer LDFA forecasting in the MLYRV.展开更多
NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the ...NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation (ISO; 30-60 days) in the mid-high latitude meridional circulation of the upper troposphere over East Asia. The abrupt transition from drought to flood occurs in early June. The first two recovered fields of the complex empirical orthogonal function show that northward-propagating westerlies from low latitudes converge with southward-propagating westerlies from high latitudes over the mid-low reaches of the Yangtze River (MLRYR) in mid late May. The timing of this convergence corresponds to the flood period in early-mid June. The ISO index is significantly and positively correlated with rainfall over the MLRYR. During the dry phase (before the transition), the upper troposphere over the MLRYR is characterized by cyclonic flow, easterly winds, and convergence. The regional circulation is dominated by a wave train with a cyclone over east of Lake Baikal, an anticyclone over northern China, and a cyclone over the MLRYR. During the wet phase, the situation is reversed. The configuration of the wave train during the dry phase favors the southward propagation of westerly wind disturbances, while the configuration of the wave train during the wet phase favors the development and maintenance of a pumping effect and sustained ascending motions over the MLRYR.展开更多
基金National Key Research and Development Program in China,No.2017YFA0603704National Natural Science Foundation of China,No.51339004
文摘During recent decades, more frequent flood-drought alternations have been seen in China as a result of global climate change and intensive human activities, which have sig- nificant implications on water and food security. To better identify the characteristics of flood-drought alternations, we proposed a modified dry-wet abrupt alternation index (DWAAI) and applied the new method in the middle and lower reaches of the Yangtze River Basin (YRB-ML) to analyze the long-term spatio-temporal characteristics of dry-wet abrupt alterna- tion (DWAA) events based on the daily precipitation observations at 75 rainfall stations in summer from 1960 to 2015. We found that the DWAA events have been spreading in the study area with higher frequency and intensity since 1960. In particular, the DWAA events mainly occurred in May and June in the northwest of the YRB-ML, including Hanjiang River Basin, the middle reaches of the YRB, north of Dongting Lake and northwest of Poyang Lake. In addition, we also analyzed the impact of El Nifio Southern Oscillation (ENSO) on DWAA events in the YRB-ML. The results showed that around 41.04% of DWAA events occurred during the declining stages of La Nifia or within the subsequent 8 months after La Nina, which implies that La Nina events could be predictive signals of DWAA events. Besides, significant negative correlations have been found between the modified DWAAI values of all the rainfall stations and the sea surface temperature anomalies in the Nino3.4 region within the 6 months prior to the DWAA events, particularly for the Poyang Lake watershed and the middle reaches of the YRB. This study has significant implications on the flood and drought control and water resources management in the YRB-ML under the challenge of future climate change.
基金supported by the National Natural Science Foundation of China(Grant Nos.40523001 and 40221503)the National Basic Research Program of China(Grant No.2004CB418303).
文摘The daily precipitation data at 720 sta- tions over China for the 1957―2003 period during summer (May―August) are used to investigate the summer subseasonal long-cycle droughts-floods abrupt alternation (LDFA) phenomenon and a long-cycle droughts-floods abrupt alternation index (LDFAI) in the middle and lower reaches of the Yangtze River (MLYRV) is defined to quantify this phenomenon. The large-scale atmospheric circula- tion features in the anomalous LDFA years are ex- amined statistically. Results demonstrate that the summer droughts-to-floods (DTF) in the MLYRV usually accompany with the more southward western Pacific subtropical high (WPSH), negative vorticity, strong divergence, descending movements develop- ing and the weak moisture transport in the low level, the more southward position of the South Asia high (SAH) and the westerly jets in the high level during May―June, but during July―August it is in the other way, northward shift of the WPSH, positive vorticity, strong convergence, ascending movements and strong moisture transport in the low level, and the northward shift of the SAH and the westerly jets in the high level. While for the summer floods-to-droughts (FTD) in the MLYRV it often goes with the active coldair mass from the high latitude, positive vorticity, strong convergence, ascending movement develop- ing and the strong moisture transport in the low level, and the SAH over the Tibetan Plateau in the high level, but during July―August it is often connected with the negative vorticity, strong divergence, de- scending movements developing and the weak moisture transport in the low level, the remarkable northward shift of the WPSH, the SAH extending northeastward to North China and the easterly jets prevailing in the high level over the MLYRV. In addi- tion, the summer LDFA in the MLYRV is of significant relationship with the Southern Hemisphere annual mode and the Northern Hemisphere annual mode in the preceding February, which offers some predictive signals for the summer LDFA forecasting in the MLYRV.
基金Supported by the National Natural Science Foundation of China (41221064 and 40875052)China Meteorological Administration Special Public Welfare Research Fund (GYHY200906017 and GYHY201006020)Basic Research Fund of the Chinese Academy of Meteorological Sciences (2010Z003)
文摘NCEP/NCAR daily reanalysis data and Chinese daily gridded precipitation data are used to study the relationship between an aprupt drought-flood transition over the mid-low reaches of the Yangtze River in 2011 and the intraseasonal oscillation (ISO; 30-60 days) in the mid-high latitude meridional circulation of the upper troposphere over East Asia. The abrupt transition from drought to flood occurs in early June. The first two recovered fields of the complex empirical orthogonal function show that northward-propagating westerlies from low latitudes converge with southward-propagating westerlies from high latitudes over the mid-low reaches of the Yangtze River (MLRYR) in mid late May. The timing of this convergence corresponds to the flood period in early-mid June. The ISO index is significantly and positively correlated with rainfall over the MLRYR. During the dry phase (before the transition), the upper troposphere over the MLRYR is characterized by cyclonic flow, easterly winds, and convergence. The regional circulation is dominated by a wave train with a cyclone over east of Lake Baikal, an anticyclone over northern China, and a cyclone over the MLRYR. During the wet phase, the situation is reversed. The configuration of the wave train during the dry phase favors the southward propagation of westerly wind disturbances, while the configuration of the wave train during the wet phase favors the development and maintenance of a pumping effect and sustained ascending motions over the MLRYR.