The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show th...The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years.展开更多
Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as th...Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as the"two-lake region"hereafter).The National Centers for Environmental Prediction(NCEP)reanalysis data are then utilized to perform a preliminary diagnostic analysis on these events.The results indicate that the composite standardized geopotential height at 500 hPa presents two different meridional wave trains from north to south over the East Asian-Pacific region,i.e.,a"-+-"pattern for the droughts and a"+-+"pattern for the floods,respectively.The developing,maintaining and decaying phases in the drought and flood events are closely related to the intensity and location of a subtropical high and an extra-tropical blocking high.It is shown that the East Asian summer monsoon is strong(weak)with the occurrence of persistent drought(flood)events.Droughts(floods)are accompanied by a weak(strong)tropical convergent system and a strong(weak)subtropical convergent system.Furthermore,the persistent drought(flood)events are associated with a divergence(convergence)of vertically integrated water vapor flux.In the vertical profile of water vapor flux,divergence(convergence)in the mid-and lower-levels and convergence(divergence)in the higher levels are evident in the droughts(floods).Both the divergence in the droughts and the convergence in floods are strongest at 850 hPa.展开更多
In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study i...In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land.展开更多
By using the one-point correlation method, calculations have been made of the northern early summer 500 hPa teleconnection patterns. Seven teleconnection patterns are revealed, namely, the Western Atlantic (WA), the E...By using the one-point correlation method, calculations have been made of the northern early summer 500 hPa teleconnection patterns. Seven teleconnection patterns are revealed, namely, the Western Atlantic (WA), the Eastern Atlantic (EA), the Eurasian (EU), the Bengal / Northern Pacific (BNP), the Western Pacific (WP), the East Asian / Pacific (EAP), and the Huanghe / East Asian (HEA) patterns. Their centers are determined and their yearly intensity indices (1951-1990) are calculated. On this basis the relationship between their interannual variations and the drought / flood in China is examined. It is noted that the EU, HEA and EAP wave trains are closely related to the drought / flood in China. The HEA and EAP patterns strongly influence the precipitation in eastern China. For example, the fierce floods experienced in 1991 early summer over China are related to the weak EAP and strong HEA patterns.展开更多
By applying rotated complex empirical orthogonal function (RCEOF) analysis on 1880-1999 summer rainfall at 28 selected stations over the east part of China, the spatio-temporal variations of China summer rainfall are ...By applying rotated complex empirical orthogonal function (RCEOF) analysis on 1880-1999 summer rainfall at 28 selected stations over the east part of China, the spatio-temporal variations of China summer rainfall are investigated. Six divisions are identified, showing strong temporal variability, the middle and lower reaches of the Yangtze River, the Huaihe River, Southeast China, North China, Southwest China, and Northeast China. The locations of all divisions except Southwest China are in a good agreement with those of the rainband which moves northward from Southeast China to Northeast China from June-August. The phase relationship revealed by the RCEOF analysis suggests that rainfall anomalies in the middle and lower reaches of the Yangtze River, Southeast China, and Northeast China are all characterized by a stationary wave, while a traveling wave is more pronounced in the Huaihe River division, North China, and Southwest China. The fourth RCEOF mode indicates that rainfall anomalies can propagate from south of Northeast China across lower reaches of the Huanghe River and the Huaihe River to the lower reaches of the Yangtze River. A 20-25-year oscillation is found at the middle and lower reaches of the Yangtze River, the Huaihe River valley, North China, and Northeast China. The middle and lower reaches of the Yangtze River and Northeast China also show an approximately-60-year oscillation. Northeast China and the Huaihe River division are dominated by a 36-year and a 70-80-year oscillation, respectively. An 11-year oscillation is also evident in North China, with a periodicity similar to sunspot activity. The interdecadal variability in the middle and lower reaches of the Yangtze River, the Huaihe River valley, and North China shows a significant positive correlation with the solar activity.展开更多
Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in bo...Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.展开更多
[Objective] The aim was to study the relation among summer rainfall in south Shandong and high pressure in South Asia and atmospheric circulation.[Method] Taking the precipitation in south Shandong along the Yellow Ri...[Objective] The aim was to study the relation among summer rainfall in south Shandong and high pressure in South Asia and atmospheric circulation.[Method] Taking the precipitation in south Shandong along the Yellow River and Huaihe River,using the NCEP/NCAR data and summer rainfall data in south Shandong in summer from 1961 to 2005,the characteristics of high pressure in South Asia and atmospheric circulation in drought year and flood year in summer in south Shandong Province were expounded.The mechanism of 100 hPa pressure in South Asian influencing precipitation in south Shandong Province was discussed.The interaction of different equipment,different altitude and different system of atmosphere circulation in low and high layer was expounded.[Results] The first mode of EOF decomposition of precipitation in summer in south Shandong Province explained above 63% variances and reflected universal form of precipitation.The difference of central position of the central position of height field of high pressure in South Asia in drought and flood year was small.But the wind field center was inconsistent.As the area of SAH was smaller and its eastern ridge line stretched to the Western Pacific between the middle of south Shandong and Changjiang Estuary,flood summer occurred when there was an unusual cyclone lied in the east of 90° E and south of Lake Baikal.The area of SAH was larger and its eastern ridge line stretching to the Western Pacific over Changjiang Estuary,drought summer occurred,when there was an unusual anticyclone lied in the east of 90° E and south of Lake Baikal.SAH and summer rainfall also had close relationship with Tele-connection Patterns over the Eurasia continent and EAP Tele-connection.When the height anomaly was in '+-+' form in the north of the Caspian Sea,around Lake Baikal and Kamchatka,and when the height anomaly in East Asia-West Pacific area was in '-+' form from low altitude to high altitude,there was much precipitation in summer;and conversely,it was drought in summer in south Shandong.[Conclusion] It provided the oretical basis for summer rainfall in south Shandong.展开更多
Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the dro...Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.展开更多
文摘The intraseasonal oscillation (ISO) is studied during the severe flood and drought years of the Changjiang-Huaihe River Basin with the NCEP/NCAR reanalysis data and the precipitation data in China. The results show that the upper-level (200 hPa) ISO pattern for severe flood (drought) is characterized by an anticyclonic (cyclonic) circulation over the southern Tibetan Plateau and a cyclonic (anti-cyclonic) circulation over the northern Tibetan Plateau. The lower-level (850 hPa) ISO pattern is characterized by an anticyclonic (cyclonic) circulation over the area south of the Changjiang River, the South China Sea, and the Western Pacific, and a cyclonic (anticyclonic) circulation from the area north of the Changjiang River to Japan. These low-level ISO circulation patterns are the first modes of the ISO wind field according to the vector EOF expansion with stronger amplitude of the EOF1 time coefficient in severe flood years than in severe drought years. The analyses also reveal that at 500 hPa and 200 hPa, the atmospheric ISO activity over the Changjiang-Huaihe River basin, North China, and the middle-high latitudes north of China is stronger for severe flood than for severe drought. The ISO meridional wind over the middle-high latitude regions can propagate southwards and meet with the northward propagating ISO meridional wind from lower latitude regions over the Changjiang-Huaihe River Basin during severe flood years, but not during severe drought years.
基金China Meteorological Administration for the R&D Special Fund for Public Welfare Industry(Meteorology)(GYHY201306016)
文摘Based on the daily regional mean rainfall,the Z-index method is used to identify persistent flood and drought events lasting for at least 10 days over a region where Dongting Lake and Poyang Lake sit(referred to as the"two-lake region"hereafter).The National Centers for Environmental Prediction(NCEP)reanalysis data are then utilized to perform a preliminary diagnostic analysis on these events.The results indicate that the composite standardized geopotential height at 500 hPa presents two different meridional wave trains from north to south over the East Asian-Pacific region,i.e.,a"-+-"pattern for the droughts and a"+-+"pattern for the floods,respectively.The developing,maintaining and decaying phases in the drought and flood events are closely related to the intensity and location of a subtropical high and an extra-tropical blocking high.It is shown that the East Asian summer monsoon is strong(weak)with the occurrence of persistent drought(flood)events.Droughts(floods)are accompanied by a weak(strong)tropical convergent system and a strong(weak)subtropical convergent system.Furthermore,the persistent drought(flood)events are associated with a divergence(convergence)of vertically integrated water vapor flux.In the vertical profile of water vapor flux,divergence(convergence)in the mid-and lower-levels and convergence(divergence)in the higher levels are evident in the droughts(floods).Both the divergence in the droughts and the convergence in floods are strongest at 850 hPa.
文摘In terms of Kuo-Qian pesigma incorporated coordinate five-level primitive equation spheric band (70°N-30°S)model with the Ural high's effect introduced into it as initial and boundary conditions, study is made of the high's influence on Asian summer monsoon circulation and dryness / wetness of eastern China based on case contrast andcontrol experiments. Rusults show that as an excitation source, the blocking high produces a SE-NW stationarywavetrain with its upper-air atnicyclonic divergent circulation oust over a lower-level trough zone) precisely over themiddle to lower reaches of the Changjiang River, enhancing East Asian westerly jet, a situation that contributes toPerturbation growth, causing an additional secondary meridional circulation at the jet entrance, which intensifies theupdraft in the monsoon area. As such, the high's presence and its excited steady wavetrain represent the large-scalekey factors and acting mechanisms for the rainstorm over the Changjiang-Huaihe River catchment in the easternpart of the land.
基金This study is one of the research projects sponsored by the Monsoon Research Foundation of State Meteorological Administration.
文摘By using the one-point correlation method, calculations have been made of the northern early summer 500 hPa teleconnection patterns. Seven teleconnection patterns are revealed, namely, the Western Atlantic (WA), the Eastern Atlantic (EA), the Eurasian (EU), the Bengal / Northern Pacific (BNP), the Western Pacific (WP), the East Asian / Pacific (EAP), and the Huanghe / East Asian (HEA) patterns. Their centers are determined and their yearly intensity indices (1951-1990) are calculated. On this basis the relationship between their interannual variations and the drought / flood in China is examined. It is noted that the EU, HEA and EAP wave trains are closely related to the drought / flood in China. The HEA and EAP patterns strongly influence the precipitation in eastern China. For example, the fierce floods experienced in 1991 early summer over China are related to the weak EAP and strong HEA patterns.
基金The authors wish to thank Professor Wang Shaowu from the Department of AtmosphericSciences of Peking University, who generously provided the China Summer Rainfall Station Data used in this study. This research was supported by the National Key Program
文摘By applying rotated complex empirical orthogonal function (RCEOF) analysis on 1880-1999 summer rainfall at 28 selected stations over the east part of China, the spatio-temporal variations of China summer rainfall are investigated. Six divisions are identified, showing strong temporal variability, the middle and lower reaches of the Yangtze River, the Huaihe River, Southeast China, North China, Southwest China, and Northeast China. The locations of all divisions except Southwest China are in a good agreement with those of the rainband which moves northward from Southeast China to Northeast China from June-August. The phase relationship revealed by the RCEOF analysis suggests that rainfall anomalies in the middle and lower reaches of the Yangtze River, Southeast China, and Northeast China are all characterized by a stationary wave, while a traveling wave is more pronounced in the Huaihe River division, North China, and Southwest China. The fourth RCEOF mode indicates that rainfall anomalies can propagate from south of Northeast China across lower reaches of the Huanghe River and the Huaihe River to the lower reaches of the Yangtze River. A 20-25-year oscillation is found at the middle and lower reaches of the Yangtze River, the Huaihe River valley, North China, and Northeast China. The middle and lower reaches of the Yangtze River and Northeast China also show an approximately-60-year oscillation. Northeast China and the Huaihe River division are dominated by a 36-year and a 70-80-year oscillation, respectively. An 11-year oscillation is also evident in North China, with a periodicity similar to sunspot activity. The interdecadal variability in the middle and lower reaches of the Yangtze River, the Huaihe River valley, and North China shows a significant positive correlation with the solar activity.
基金National Key Program for Developing Basic Science(2016YFA0600303)National Natural Science Foundation of China(41675064,41621005,41330420,41275068)+2 种基金Jiangsu Province Science Foundation(SBK2015020577)Key Laboratory Project Foundation(KLME1501)Jiangsu Collaborative Innovation Center for Climate Change
文摘Using the CAM3.0 model, we investigated the respective effects of aerosol concentration increasing and decadal variation of global sea surface temperature(SST) around year 1976/77 on the East Asian precipitation in boreal summer. By doubling the concentration of the sulfate aerosol and black carbon aerosol separately and synchronously in East Asia(100-150 °E, 20-50 °N), the climate effects of these aerosols are specifically investigated. The results show that both the decadal SST changing and aerosol concentration increasing could lead to rainfall decreasing in the center of East Asia, but increasing in the regions along southeast coast areas of China. However, the different patterns of rainfall over ocean and lower wind field over Asian continent between aerosol experiments and SST experiments in CAM3.0 indicate the presence of different mechanisms. In the increased aerosol concentration experiments, scattering effect is the main climate effect for both sulfate and black carbon aerosols in the Eastern Asian summer. Especially in the increased sulfate aerosol concentration experiment, the climate scattering effect of aerosol leads to the most significant temperature decreasing, sinking convection anomalies and decreased rainfall in the troposphere over the central part of East Asia. However, in an increased black carbon aerosol concentration experiment, weakened sinking convection anomalies exist at the southerly position. This weakened sinking and its compensating rising convection anomalies in the south lead to the heavy rainfall over southeast coast areas of China. When concentrations of both sulfate and black carbon aerosols increase synchronously, the anomalous rainfall distribution is somewhat like that in the increased black carbon concentration aerosol experiment but with less intensity.
文摘[Objective] The aim was to study the relation among summer rainfall in south Shandong and high pressure in South Asia and atmospheric circulation.[Method] Taking the precipitation in south Shandong along the Yellow River and Huaihe River,using the NCEP/NCAR data and summer rainfall data in south Shandong in summer from 1961 to 2005,the characteristics of high pressure in South Asia and atmospheric circulation in drought year and flood year in summer in south Shandong Province were expounded.The mechanism of 100 hPa pressure in South Asian influencing precipitation in south Shandong Province was discussed.The interaction of different equipment,different altitude and different system of atmosphere circulation in low and high layer was expounded.[Results] The first mode of EOF decomposition of precipitation in summer in south Shandong Province explained above 63% variances and reflected universal form of precipitation.The difference of central position of the central position of height field of high pressure in South Asia in drought and flood year was small.But the wind field center was inconsistent.As the area of SAH was smaller and its eastern ridge line stretched to the Western Pacific between the middle of south Shandong and Changjiang Estuary,flood summer occurred when there was an unusual cyclone lied in the east of 90° E and south of Lake Baikal.The area of SAH was larger and its eastern ridge line stretching to the Western Pacific over Changjiang Estuary,drought summer occurred,when there was an unusual anticyclone lied in the east of 90° E and south of Lake Baikal.SAH and summer rainfall also had close relationship with Tele-connection Patterns over the Eurasia continent and EAP Tele-connection.When the height anomaly was in '+-+' form in the north of the Caspian Sea,around Lake Baikal and Kamchatka,and when the height anomaly in East Asia-West Pacific area was in '-+' form from low altitude to high altitude,there was much precipitation in summer;and conversely,it was drought in summer in south Shandong.[Conclusion] It provided the oretical basis for summer rainfall in south Shandong.
基金National Natural Science Foundation of China No.40890053 Special Scientific Fund for Non-profit Public Industry (Meteorology) No.GYHY200906016 No.GYHY201006038
文摘Based on the drought/flood grades of 90 meterological stations over eastern China and summer average sea-level pressure (SLP) during 1850-2008 and BPCCA statistical methods, the coupling relationship between the drought/flood grades and the East Asian summer SLP is analyzed. The East Asian summer monsoon index which is closely related with interdecadal variation of drought/flood distribution over eastern China is defined by using the key areas of SLP. The impact of the interdecadal variation of the East Asian summer monsoon on the distribution of drought/flood over eastern China in the last 159 years is researched. The results show that there are four typical drought and flood spatial distribution patterns in eastern China, i.e. the distribution of drought/flood in southern China is contrary to the other regions, the distribution of drought/flood along the Huanghe River–Huaihe River Valley is contrary to the Yangtze River Valley and regions south of it, the distribution of drought/flood along the Yangtze River Valley and Huaihe River Valley is contrary to the other regions, the distribution of drought/flood in eastern China is contrary to the western. The main distribution pattern of SLP in summer is that the strength of SLP is opposite in Asian continent and West Pacific. It has close relationship between the interdecadal variation of drought/flood distribution patterns over eastern China and the interdecadal variation of the East Asian summer monsoon which was defined in this paper, but the correlation is not stable and it has a significant difference in changes of interdecadal phase. When the East Asian summer monsoon was stronger (weaker), regions north of the Yangtze River Valley was more susceptible to drought (flood), the Yangtze River Valley and regions south of it were more susceptible to flood (drought) before the 1920s; when the East Asian summer monsoon was stronger (weaker), the regions north of the Yangtze River Valley was prone to flood (drought), the Yangtze River Valley and regions south of it were prone to drought (flood) after the 1920s. It is indicated that by using the data of the longer period could get much richer results than by using the data of the last 50–60 years. The differences in the interdecadal phase between the East Asian summer monsoon and the drought/flood distributions in eastern China may be associated with the nonlinear feedback, which is the East Asian summer monsoon for the extrinsic forcing of solar activity.