背景高血压是心血管疾病主要的危险因素,降压用药不仅要考虑患者血压特征,也要考虑患者合并症情况。现阶段,基于家庭医生签约服务对高血压患者的服药状况及影响因素研究比较缺乏。目的调查安徽省界首市家庭医生签约服务的高血压患者服...背景高血压是心血管疾病主要的危险因素,降压用药不仅要考虑患者血压特征,也要考虑患者合并症情况。现阶段,基于家庭医生签约服务对高血压患者的服药状况及影响因素研究比较缺乏。目的调查安徽省界首市家庭医生签约服务的高血压患者服药现状,描述患者服药行为与患者特征之间的关联,探索患者用药调整的影响因素,并分析基层高血压患者用药的合理性。方法采用整群抽样的方法,于2021年7—8月从安徽省界首市随机抽取48个行政村,通过面对面调查法采用自制问卷收集患者特征和服药数据,参照《国家基层高血压防治管理指南2020版》将问卷中患者提到的降压药分为如下5类:A类为血管紧张素转换酶抑制剂(ACEI)和血管紧张素受体阻滞剂(ARB),B类为β受体阻滞剂,C类为钙通道阻滞剂(CCB),D类为利尿剂,E类为单片复方制剂。通过科大讯飞智能语音血压计的后台获取患者上传的近1年血压数据,分析不同特征患者的服药行为。采用多因素Logistic回归分析探讨高血压患者用药调整的影响因素。本研究中联合用药是指服用复方制剂或2种以上降压药,用药调整是指患者过去服用其他降压药。结果本研究共纳入高血压患者3005例,其中男1291例(43.0%)、女1714例(57.0%),平均年龄为(65.5±9.8)岁,高血压服药率为79.1%,联合用药率为40.2%。2376例服用降压药的患者中,不同类型降压药服用率从高到低依次为(部分患者存在联合用药):E类(39.6%)、C类(35.1%)、D类(20.3%)、A类(20.1%)、B类(3.7%);服用最多的降压药为复方利血平(33.7%)。对于年均血压≥160/100mm Hg的患者,仍有12.2%和4.9%未服用降压药。患者联合用药以E类降压药为主。年均“舒张压≥100 mm Hg”且“患合并症”的患者,调整后A类和C类降压药的服用率增加相对较多,年均“收缩压≥160 mm Hg”且“未患合并症”的患者,调整后E类降压药的服用率增加相对较多。多因素Logistic回归结果显示,服药年数长(OR=1.042,95%CI=1.031~1.053,P<0.001)、初中以上文化程度(OR=1.488,95%CI=1.195~1.853,P<0.001)、合并高脂血症(OR=1.267,95%CI=1.052~1.525,P=0.013)、合并心血管疾病(OR=1.394,95%CI=1.166~1.667,P<0.001)、合并脑血管疾病(OR=1.258,95%CI=1.040~1.522,P=0.018)是患者用药调整的促进因素,高龄(OR=0.980,95%CI=0.971~0.990,P<0.001)是用药调整的抑制因素。结论界首市农村地区高血压患者的服药率较高,主要服用E类和C类降压药。服药年数长、初中以上文化程度、合并高脂血症、合并心脑血管疾病是患者用药调整的促进因素,高龄是用药调整的抑制因素。展开更多
County grass-root food and drug administrations (CGFDA) undertake the front-line supervision of food and drug safety, whose resource allocation is vital to the regulation efficiency and performance. In this article,...County grass-root food and drug administrations (CGFDA) undertake the front-line supervision of food and drug safety, whose resource allocation is vital to the regulation efficiency and performance. In this article, we aimed to analyze the status quo of resource allocation of CGFDA from the aspects of regulatory organization, staff, funding and equipment using official panel data from 2011 to 2016. The results illustrated that the total amount of regulatory resources of CGFDA was increased annuall y, reaching a rather large scale. However, many problems still existed in its allocation. Therefore, a series of measures should be taken to optimize the resource allocation of CGFDA, such as improving the network of institutional CGFDA, increasing the recruitment requirements on educational level and major, reallocating the structure of resources and guaranteeing the resource demand in less-developed areas.展开更多
文摘背景高血压是心血管疾病主要的危险因素,降压用药不仅要考虑患者血压特征,也要考虑患者合并症情况。现阶段,基于家庭医生签约服务对高血压患者的服药状况及影响因素研究比较缺乏。目的调查安徽省界首市家庭医生签约服务的高血压患者服药现状,描述患者服药行为与患者特征之间的关联,探索患者用药调整的影响因素,并分析基层高血压患者用药的合理性。方法采用整群抽样的方法,于2021年7—8月从安徽省界首市随机抽取48个行政村,通过面对面调查法采用自制问卷收集患者特征和服药数据,参照《国家基层高血压防治管理指南2020版》将问卷中患者提到的降压药分为如下5类:A类为血管紧张素转换酶抑制剂(ACEI)和血管紧张素受体阻滞剂(ARB),B类为β受体阻滞剂,C类为钙通道阻滞剂(CCB),D类为利尿剂,E类为单片复方制剂。通过科大讯飞智能语音血压计的后台获取患者上传的近1年血压数据,分析不同特征患者的服药行为。采用多因素Logistic回归分析探讨高血压患者用药调整的影响因素。本研究中联合用药是指服用复方制剂或2种以上降压药,用药调整是指患者过去服用其他降压药。结果本研究共纳入高血压患者3005例,其中男1291例(43.0%)、女1714例(57.0%),平均年龄为(65.5±9.8)岁,高血压服药率为79.1%,联合用药率为40.2%。2376例服用降压药的患者中,不同类型降压药服用率从高到低依次为(部分患者存在联合用药):E类(39.6%)、C类(35.1%)、D类(20.3%)、A类(20.1%)、B类(3.7%);服用最多的降压药为复方利血平(33.7%)。对于年均血压≥160/100mm Hg的患者,仍有12.2%和4.9%未服用降压药。患者联合用药以E类降压药为主。年均“舒张压≥100 mm Hg”且“患合并症”的患者,调整后A类和C类降压药的服用率增加相对较多,年均“收缩压≥160 mm Hg”且“未患合并症”的患者,调整后E类降压药的服用率增加相对较多。多因素Logistic回归结果显示,服药年数长(OR=1.042,95%CI=1.031~1.053,P<0.001)、初中以上文化程度(OR=1.488,95%CI=1.195~1.853,P<0.001)、合并高脂血症(OR=1.267,95%CI=1.052~1.525,P=0.013)、合并心血管疾病(OR=1.394,95%CI=1.166~1.667,P<0.001)、合并脑血管疾病(OR=1.258,95%CI=1.040~1.522,P=0.018)是患者用药调整的促进因素,高龄(OR=0.980,95%CI=0.971~0.990,P<0.001)是用药调整的抑制因素。结论界首市农村地区高血压患者的服药率较高,主要服用E类和C类降压药。服药年数长、初中以上文化程度、合并高脂血症、合并心脑血管疾病是患者用药调整的促进因素,高龄是用药调整的抑制因素。
基金National Social Science Fund (NSSF) of China(Grant No.13BGL141)
文摘County grass-root food and drug administrations (CGFDA) undertake the front-line supervision of food and drug safety, whose resource allocation is vital to the regulation efficiency and performance. In this article, we aimed to analyze the status quo of resource allocation of CGFDA from the aspects of regulatory organization, staff, funding and equipment using official panel data from 2011 to 2016. The results illustrated that the total amount of regulatory resources of CGFDA was increased annuall y, reaching a rather large scale. However, many problems still existed in its allocation. Therefore, a series of measures should be taken to optimize the resource allocation of CGFDA, such as improving the network of institutional CGFDA, increasing the recruitment requirements on educational level and major, reallocating the structure of resources and guaranteeing the resource demand in less-developed areas.