Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been...Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.展开更多
Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs.To address this,this study desc...Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs.To address this,this study describes the use of threedimensional(3D)bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells(3DP-7721)by combining gelatin methacrylate(GelMA)and poly(ethylene oxide)(PEO)as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells.The GelMA(10%,mass fraction)and PEO(1.6%,mass fraction)hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics,satisfactorymechanical properties,and biocompatibility for the creation of the 3DP-7721 model.Immunofluorescence analysis and quantitative real-time fluorescence polymerase chain reaction(PCR)were used to evaluate the biological properties of the model.Compared with the two-dimensional culture cell model(2D-7721)and the 3D mixed culture cell model(3DM-7721),3DP-7721 significantly improved the proliferation of cells and expression of tumor-related proteins and genes.Moreover,we evaluated the differences between the three culture models and the effectiveness of antitumor drugs in the three models and discovered that the efficacy of antitumor drugs varied because of significant differences in resistance proteins and genes between the three models.In addition,the comparison of tumor formation in the three models found that the cells cultured by the 3DP-7721 model had strong tumorigenicity in nude mice.Immunohistochemical evaluation of the levels of biochemical indicators related to the formation of solid tumors showed that the 3DP-7721 model group exhibited pathological characteristics of malignant tumors,the generated solid tumors were similar to actual tumors,and the deterioration was higher.This research therefore acts as a foundation for the application of 3DP-7721 models in drug development research.展开更多
The rapidly advancing field of artificial intelligence(AI)has garnered substantial attention for its potential application in drug discovery and development.This opinion review critically examined the feasibility and ...The rapidly advancing field of artificial intelligence(AI)has garnered substantial attention for its potential application in drug discovery and development.This opinion review critically examined the feasibility and prospects of integrating AI as a transformative tool in the pharmaceutical industry.AI,encompassing machine learning algorithms,deep learning,and data analytics,offers unprecedented opportunities to streamline and enhance various stages of drug development.This opinion review delved into the current landscape of AI-driven approaches,discussing their utilization in target identification,lead optimization,and predictive modeling of pharmacokinetics and toxicity.We aimed to scrutinize the integration of large-scale omics data,electronic health records,and chemical informatics,highlighting the power of AI in uncovering novel therapeutic targets and accelerating drug repurposing strategies.Despite the considerable potential of AI,the review also addressed inherent challenges,including data privacy concerns,interpretability of AI models,and the need for robust validation in realworld clinical settings.Additionally,we explored ethical considerations surrounding AI-driven decision-making in drug development.This opinion review provided a nuanced perspective on the transformative role of AI in drug discovery by discussing the existing literature and emerging trends,presenting critical insights and addressing potential hurdles.In conclusion,this study aimed to stimulate discourse within the scientific community and guide future endeavors to harness the full potential of AI in drug development.展开更多
Modern drugs have changed epilepsy,which affects people of all ages.However,for young people with epilepsy,the framework of drug development has stalled.In the wake of the thalidomide catastrophe,the misconception eme...Modern drugs have changed epilepsy,which affects people of all ages.However,for young people with epilepsy,the framework of drug development has stalled.In the wake of the thalidomide catastrophe,the misconception emerged that for people<18 years of age drugs,including antiseizure medications(ASMs),need separate proof of efficacy and safety,overall called"pediatric drug development".For ASMs,this has changed to some degree.Authorities now accept that ASMs are effective in<18 years as well,but they still require"extrapolation of efficacy,"as if minors were another species.As a result,some of the pediatric clinical epilepsy research over the past decades was unnecessary.Even more importantly,this has hampered research on meaningful research goals.We do not need to confirm that ASMs work before as they do after the 18th birthday.Instead,we need to learn how to prevent brain damage in young patients by preventing seizures and optimize ASMs’uses.Herein we discuss how to proceed in this endeavor.展开更多
With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research....With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research. The emergence of real-world data studies, which align more closely with actual clinical evidence, has garnered significant attention in recent years. The following is a brief overview of the specific utilization of real-world data in drug development, which often involves large sample sizes and analyses covering a relatively diverse population without strict inclusion and exclusion criteria. Real-world data often reflects real clinical practice: treatment options are chosen according to the actual conditions and willingness of patients rather than through random assignment. Analysis based on real-world data also focuses on endpoints highly relevant to clinical benefits and the quality of life of patients. The booming big data technology supports the utilization of real-world data to accelerate new drug development, serving as an important supplement to traditional clinical trials.展开更多
Objective To identify technical risks in the process of innovative drug development,and to provide reference for technical risk management so as to reduce the uncertainties and improve the efficiency of research and d...Objective To identify technical risks in the process of innovative drug development,and to provide reference for technical risk management so as to reduce the uncertainties and improve the efficiency of research and development.Methods The initial risk index was investigated by literature research.Then,the Likert scale was used to design a questionnaire,and the experts’opinion was used to analyze the risk factors affecting the different stages of the development of innovative drugs in China.Results and Conclusion Based on the analysis of questionnaire,31 risk indicators of five key stages in the development of innovative drugs from drug discovery to marketing authorization were established.The key risk indicators constructed in this study can provide reference for technology-related risk management in the process of innovative drug development.展开更多
Objective To identify the critical risks in the process of innovative drug research and development,and to provide reference for improving the efficiency of innovative drug development and risk control in China.Method...Objective To identify the critical risks in the process of innovative drug research and development,and to provide reference for improving the efficiency of innovative drug development and risk control in China.Methods Expert investigation and analytic hierarchy process were used to determine the weights of different risks.Results and Conclusion The research and analysis results showed that the risks at different stages of development had different effects on the success rate of drug development,among which the risk at the drug discovery stage influenced the most.In the drug discovery stage,inappropriate target selection had the greatest impact on the success rate of drug development.The lack of appropriate cell tissue or animal models had the greatest impact on the success rate of drug development from the discovery of a compound to the application for clinical trials.The difference in changes between nonclinical and clinical studies had the greatest impact on the success rate of drug development from early clinical studies to pivotal clinical studies.Incorrect dose selection had the greatest impact on the success rate of drug development from pivotal clinical studies to marketing authorization applications.The biggest impact from the marketing authorization application to the approval stage was inadequate communication with regulators.After investigating the weight of risk factors in the process of innovative drug development based on scientific methods,a new perspective for the risk control of new drug development and improving the research and development efficiency is provided.展开更多
The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria.Urgent measures need to be taken to curb this impending challenge.The highe...The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria.Urgent measures need to be taken to curb this impending challenge.The higher plant-derived sesquiterpene,quinoline alkaloids,and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed.Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed.The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P.falciparum.To identify these novel scaffolds,we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data.Natural products were assigned to different structural classes using NPClassifier.To identify the most promising chemical scaffolds,we then correlated natural compound class with bioactivity and other data,namely(i)potency,(ii)resistance index,(iii)selectivity index and(iv)physicochemical properties.We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data.From this analysis we identified the top-ranked natural product pathway as the alkaloids.The top three ranked super classes identified were(i)pseudoalkaloids,(ii)naphthalenes and(iii)tyrosine alkaloids and the top five ranked classes(i)quassinoids(of super class triterpenoids),(ii)steroidal alkaloids(of super class pseudoalkaloids)(iii)cycloeudesmane sesquiterpenoids(of super class triterpenoids)(iv)isoquinoline alkaloids(of super class tyrosine alkaloids)and(v)naphthoquinones(of super class naphthalenes).Launched chemical space of these identified classes of compounds was,by and large,distinct from that of‘legacy’antimalarial drugs.Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs.These molecules have the potential to be developed into new antimalarial drugs.展开更多
Model-informed drug develop⁃ment(MIDD)is the application of a various math⁃ematical,statistical,and biological models to facilitate drug development,decision making and regulatory review.As a quantitative tool,MIDD ap...Model-informed drug develop⁃ment(MIDD)is the application of a various math⁃ematical,statistical,and biological models to facilitate drug development,decision making and regulatory review.As a quantitative tool,MIDD approaches allow an integration of information obtained from non-clinical studies and clinical trials in a drug development program.General understandings of the underlying biology,patho⁃physiology,and pharmacology can also be incor⁃porated into the model.MIDD is centered on knowledge and inferences generated from inte⁃grated models of the physicochemical character⁃istics of a molecule,its disposition in the body,and its mechanism of action,and how the drug might affect a disease from both an efficacy and a safety perspective.MIDD approaches have the potential to significantly streamline drug develop⁃ment,by improving clinical trial efficiency,opti⁃mizing dose and regimen and waive unneces⁃sary clinical studies.This presentation will use cases studies to demonstrate how to apply MIDD in early phase of clinical trials.展开更多
Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation(LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive thera...Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation(LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solidorgan transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.展开更多
Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epid...Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries––the United States, China, Japan, the United Kingdom, Spain, Germany, and France––by searching for all global diabetic eye disease journal articles in the Web of Science and Pub Med databases, all global registered clinical trials in the Clinical Trials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority(89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema(9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development(58.19%). Approximately half of the trials(49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic(40 out of 1830;2.19%) and diabetic eye disease(3 out of 1830;0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.展开更多
Ewing’s sarcoma(EWS)is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults.Despite the efficacy of chemoradiotherapy in some cases,the cure rate for patients with metastatic and ...Ewing’s sarcoma(EWS)is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults.Despite the efficacy of chemoradiotherapy in some cases,the cure rate for patients with metastatic and recurrent disease remains low.Therefore,there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment.Epigenetic regulation,a crucial factor in physiological processes,plays a significant role in controlling cell proliferation,maintaining gene integrity,and regulating transcription.Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS.A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development.This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS,integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.展开更多
BACKGROUND Gastrointestinal tumor organoids serve as an effective model for simulating cancer in vitro and have been applied in basic biology and preclinical research.Despite over a decade of development and increasin...BACKGROUND Gastrointestinal tumor organoids serve as an effective model for simulating cancer in vitro and have been applied in basic biology and preclinical research.Despite over a decade of development and increasing research achievements in this field,a systematic and comprehensive analysis of the research hotspots and future trends is lacking.AIM To address this problem by employing bibliometric tools to explore the publication years,countries/regions,institutions,journals,authors,keywords,and references in this field.METHODS The literature was collected from Web of Science databases.CiteSpace-6.2R4,a widely used bibliometric analysis software package,was used for institutional analysis and reference burst analysis.VOSviewer 1.6.19 was used for journal cocitation analysis,author co-authorship and co-citation analysis.The‘online platform for bibliometric analysis(https://bibliometric.com/app)’was used to assess the total number of publications and the cooperation relationships between countries.Finally,we employed the bibliometric R software package(version R.4.3.1)in R-studio,for a comprehensive scientific analysis of the literature.RESULTS Our analysis included a total of 1466 publications,revealing a significant yearly increase in articles on the study of gastrointestinal tumor organoids.The United States(n=393)and Helmholtz Association(n=93)have emerged as the leading countries and institutions,respectively,in this field,with Hans Clevers and Toshiro Sato being the most contributing authors.The most influential journal in this field is Gastroenterology.The most impactful reference is"Long term expansion of epithelial organs from human colon,adenoma,adenocarcinoma,and Barrett's epithelium".Keywords analysis and citation burst analysis indicate that precision medicine,disease modeling,drug development and screening,and regenerative medicine are the most cutting-edge directions.These focal points were further detailed based on the literature.CONCLUSION This bibliometric study offers an objective and quantitative analysis of the research in this field,which can be considered as an important guide for next scientific research.展开更多
Biology without governing principle makes predications impossible. Observations lead to some successful therapies, and to unexpected failures. Erwin Schr<span style="white-space:nowrap;">ö<...Biology without governing principle makes predications impossible. Observations lead to some successful therapies, and to unexpected failures. Erwin Schr<span style="white-space:nowrap;">ö</span>dinger attempted to quantify biology with the concept of negative entropy. These insights lead to fundamental principles of biologic entropy. The quantification of negative entropy is difficult to calculate since the number of parts of the body and the way these parts are arranged is very large (atomistic disorder). There can be approximations that answer questions such as why females live longer, and why a lower body temperature predicts longevity. This concept can reveal the culprit of diabetes II;understanding the microbiome can reduce its entropy by increasing the entropy of its host. The real advantage of statistical entropy is finding new drugs and predicting viral mutations based on energetics and negative entropy. The misfolding of a protein will increase the entropy of an individual with the result of early death. The calculations of biologic entropy require the knowledge of each developmental step, and the statistical possibilities of the next step. If the step is crucial to maintain low entropy, a carrier protein will assure the energetics of the step is favorable. This protein is the target of new therapies.展开更多
This study aimed to develop a guideline for therapeutic drug monitoring(TDM) of vancomycin. We adopted the new guideline definition from the Institute of Medicine(IOM), adhered closely to the six domains of the Ap...This study aimed to develop a guideline for therapeutic drug monitoring(TDM) of vancomycin. We adopted the new guideline definition from the Institute of Medicine(IOM), adhered closely to the six domains of the Appraisal of Guidelines for Research & Evaluation Ⅱ(AGREE Ⅱ), and made recommendations based on systematic reviews. We established a Guideline Steering Group and a Guideline Development Group, formulated 12 questions in the form of Population, Intervention, Comparison, Outcome(PICO) and completed a literature search. As far as we know, we will develop the first evidenced-based guideline for vancomycin TDM under the framework of the Grade of Recommendations Assessment, Development and Evaluation(GRADE).展开更多
There is a pressing need for effective therapeutics for coronavirus disease 2019(COVID-19),the respiratory disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus.The process of drug develop...There is a pressing need for effective therapeutics for coronavirus disease 2019(COVID-19),the respiratory disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus.The process of drug development is a costly and meticulously paced process,where progress is often hindered by the failure of initially promising leads.To aid this chal-lenge,in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening,thereby saving valuable time and resources during a pandemic crisis.The SARS-CoV-2 virus attacks the lung,an organ where the unique three-dimensional(3D)structure of its functional units is critical for proper respiratory function.The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types.Current model systems include Transwell,organoid and organ-on-a-chip or microphysiological systems(MPSs).We review models that have direct relevance toward modeling the pathology of COVID-19,including the processes of inflammation,edema,coagulation,as well as lung immune function.We also consider the practical issues that may influence the design and fabrication of MPS.The role of lung MPS is addressed in the context of multi-organ models,and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.展开更多
Developments of drugs or natural products from plants are possibly made, simple to use and lower cost than modern drugs.The development processes can be started with studying local wisdom and literature reviews to cho...Developments of drugs or natural products from plants are possibly made, simple to use and lower cost than modern drugs.The development processes can be started with studying local wisdom and literature reviews to choose the plants which have long been used in diverse areas, such as foods, traditional medicine, fragrances and seasonings.Then those data will be associated with scientific researches, namely plant collection and identification, phytochemical screening by gas chromatography-mass spectrometry,pharmacological study/review for their functions, and finally safety and efficiency tests in human.For safety testing, in vitro cell toxicity by cell viability assessment and in vitro testing of DNA breaks by the comet assay in human peripheral blood mononuclear cells can be performed.When active chemicals and functions containing plants were chosen with safety and efficacy for human uses, then, the potential medicinal natural products will be produced.Based on these procedures, the producing cost will be cheaper and the products can be evaluated for their clinical properties.Thus, the best and lowest-priced medicines and natural products can be distributed worldwide.展开更多
The therapeutic landscape of metastatic colorectal cancer(mCRC)has changed substantially with the emergence of new molecularly targeted agents(MTA)usedas single agents or alongside standard chemotherapy.The use of the...The therapeutic landscape of metastatic colorectal cancer(mCRC)has changed substantially with the emergence of new molecularly targeted agents(MTA)usedas single agents or alongside standard chemotherapy.The use of these MTAs extended the overall survival ofpatients with mCRC to a level that current chemotherapeutics alone could not achieve.In addition,improvement in surgical techniques and ablation modalities offer cure to a limited subset of patients with mCRC andMTAs have been found to have a significant role heretoo,as they aid resectability.However,for the majority of patients,mCRC remains an invariably incurabledisease necessitating continued courses of combinedtreatment modalities.During the course of these treatments,either cytotoxic or biological,cancer cells maintain their ability to acquire mitogenic mutations whichrender them resistant to treatment.Key challengesremain to identify appropriate subsets of patients whowill most likely benefit from these new MTAs and effectively select these based on validated biomarkers.Moreover,better knowledge of the biology of colorectal cancer and the mechanisms via which it bypasses blockade of known signalling pathways will help us design better and more rational sequencing of these treatments,so that we can maximise the survivorship of mCRC patients.This review outlines treatment strategies for known molecular alterations with new MTAs and highlights some promising strategies.展开更多
Alzheimer's disease (AD) is the most frequent cause of dementia in the western world. In clinical terms, AD is characterized by progres- sive cognitive decline that usually begins with memory impairment. As the dis...Alzheimer's disease (AD) is the most frequent cause of dementia in the western world. In clinical terms, AD is characterized by progres- sive cognitive decline that usually begins with memory impairment. As the disease progresses, AD inevitably affects all intellectual functions including executive functions, leading to complete dependence for basic activities of daily life and premature death.展开更多
Drug development in oncology is undergoing a substantial shift nowadays. The drivers for this are multi-factorial. On the one side, drug development is performed more rationally than ever, profiting from the scientifi...Drug development in oncology is undergoing a substantial shift nowadays. The drivers for this are multi-factorial. On the one side, drug development is performed more rationally than ever, profiting from the scientific advances in molecular biology in general and the elucidation of the various "omes" from genome to metabolome in particular.展开更多
基金supported by funding from the Bluesand Foundation,Alzheimer's Association(AARG-21-852072 and Bias Frangione Early Career Achievement Award)to EDan Australian Government Research Training Program scholarship and the University of Sydney's Brain and Mind Centre fellowship to AH。
文摘Tauopathies,diseases characterized by neuropathological aggregates of tau including Alzheimer's disease and subtypes of fro ntotemporal dementia,make up the vast majority of dementia cases.Although there have been recent developments in tauopathy biomarkers and disease-modifying treatments,ongoing progress is required to ensure these are effective,economical,and accessible for the globally ageing population.As such,continued identification of new potential drug targets and biomarkers is critical."Big data"studies,such as proteomics,can generate information on thousands of possible new targets for dementia diagnostics and therapeutics,but currently remain underutilized due to the lack of a clear process by which targets are selected for future drug development.In this review,we discuss current tauopathy biomarkers and therapeutics,and highlight areas in need of improvement,particularly when addressing the needs of frail,comorbid and cognitively impaired populations.We highlight biomarkers which have been developed from proteomic data,and outline possible future directions in this field.We propose new criteria by which potential targets in proteomics studies can be objectively ranked as favorable for drug development,and demonstrate its application to our group's recent tau interactome dataset as an example.
基金supported by the National Natural Science Foundation of China(Nos.51975400 and 62031022)Shanxi Provincial Key Medical Scientific Research Project(Nos.2020XM06 and 2021XM12)+3 种基金Fundamental Research Program of Shanxi Province(No.202103021224081)Shanxi Provincial Basic Research Project(Nos.202103021221006 and 202103021223040)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(No.2021L044)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(No.2022SX-TD026).
文摘Traditional tumor models do not tend to accurately simulate tumor growth in vitro or enable personalized treatment and are particularly unable to discover more beneficial targeted drugs.To address this,this study describes the use of threedimensional(3D)bioprinting technology to construct a 3D model with human hepatocarcinoma SMMC-7721 cells(3DP-7721)by combining gelatin methacrylate(GelMA)and poly(ethylene oxide)(PEO)as two immiscible aqueous phases to form a bioink and innovatively applying fluorescent carbon quantum dots for long-term tracking of cells.The GelMA(10%,mass fraction)and PEO(1.6%,mass fraction)hydrogel with 3:1 volume ratio offered distinct pore-forming characteristics,satisfactorymechanical properties,and biocompatibility for the creation of the 3DP-7721 model.Immunofluorescence analysis and quantitative real-time fluorescence polymerase chain reaction(PCR)were used to evaluate the biological properties of the model.Compared with the two-dimensional culture cell model(2D-7721)and the 3D mixed culture cell model(3DM-7721),3DP-7721 significantly improved the proliferation of cells and expression of tumor-related proteins and genes.Moreover,we evaluated the differences between the three culture models and the effectiveness of antitumor drugs in the three models and discovered that the efficacy of antitumor drugs varied because of significant differences in resistance proteins and genes between the three models.In addition,the comparison of tumor formation in the three models found that the cells cultured by the 3DP-7721 model had strong tumorigenicity in nude mice.Immunohistochemical evaluation of the levels of biochemical indicators related to the formation of solid tumors showed that the 3DP-7721 model group exhibited pathological characteristics of malignant tumors,the generated solid tumors were similar to actual tumors,and the deterioration was higher.This research therefore acts as a foundation for the application of 3DP-7721 models in drug development research.
基金Supported by the European Union-NextGenerationEU,through the National Recovery and Resilience Plan of the Republic of Bulgaria,No.BG-RRP-2.004-0008.
文摘The rapidly advancing field of artificial intelligence(AI)has garnered substantial attention for its potential application in drug discovery and development.This opinion review critically examined the feasibility and prospects of integrating AI as a transformative tool in the pharmaceutical industry.AI,encompassing machine learning algorithms,deep learning,and data analytics,offers unprecedented opportunities to streamline and enhance various stages of drug development.This opinion review delved into the current landscape of AI-driven approaches,discussing their utilization in target identification,lead optimization,and predictive modeling of pharmacokinetics and toxicity.We aimed to scrutinize the integration of large-scale omics data,electronic health records,and chemical informatics,highlighting the power of AI in uncovering novel therapeutic targets and accelerating drug repurposing strategies.Despite the considerable potential of AI,the review also addressed inherent challenges,including data privacy concerns,interpretability of AI models,and the need for robust validation in realworld clinical settings.Additionally,we explored ethical considerations surrounding AI-driven decision-making in drug development.This opinion review provided a nuanced perspective on the transformative role of AI in drug discovery by discussing the existing literature and emerging trends,presenting critical insights and addressing potential hurdles.In conclusion,this study aimed to stimulate discourse within the scientific community and guide future endeavors to harness the full potential of AI in drug development.
文摘Modern drugs have changed epilepsy,which affects people of all ages.However,for young people with epilepsy,the framework of drug development has stalled.In the wake of the thalidomide catastrophe,the misconception emerged that for people<18 years of age drugs,including antiseizure medications(ASMs),need separate proof of efficacy and safety,overall called"pediatric drug development".For ASMs,this has changed to some degree.Authorities now accept that ASMs are effective in<18 years as well,but they still require"extrapolation of efficacy,"as if minors were another species.As a result,some of the pediatric clinical epilepsy research over the past decades was unnecessary.Even more importantly,this has hampered research on meaningful research goals.We do not need to confirm that ASMs work before as they do after the 18th birthday.Instead,we need to learn how to prevent brain damage in young patients by preventing seizures and optimize ASMs’uses.Herein we discuss how to proceed in this endeavor.
文摘With the rapid development of modern science and technology, traditional randomized controlled trials have become insufficient to meet current scientific research needs, particularly in the field of clinical research. The emergence of real-world data studies, which align more closely with actual clinical evidence, has garnered significant attention in recent years. The following is a brief overview of the specific utilization of real-world data in drug development, which often involves large sample sizes and analyses covering a relatively diverse population without strict inclusion and exclusion criteria. Real-world data often reflects real clinical practice: treatment options are chosen according to the actual conditions and willingness of patients rather than through random assignment. Analysis based on real-world data also focuses on endpoints highly relevant to clinical benefits and the quality of life of patients. The booming big data technology supports the utilization of real-world data to accelerate new drug development, serving as an important supplement to traditional clinical trials.
文摘Objective To identify technical risks in the process of innovative drug development,and to provide reference for technical risk management so as to reduce the uncertainties and improve the efficiency of research and development.Methods The initial risk index was investigated by literature research.Then,the Likert scale was used to design a questionnaire,and the experts’opinion was used to analyze the risk factors affecting the different stages of the development of innovative drugs in China.Results and Conclusion Based on the analysis of questionnaire,31 risk indicators of five key stages in the development of innovative drugs from drug discovery to marketing authorization were established.The key risk indicators constructed in this study can provide reference for technology-related risk management in the process of innovative drug development.
文摘Objective To identify the critical risks in the process of innovative drug research and development,and to provide reference for improving the efficiency of innovative drug development and risk control in China.Methods Expert investigation and analytic hierarchy process were used to determine the weights of different risks.Results and Conclusion The research and analysis results showed that the risks at different stages of development had different effects on the success rate of drug development,among which the risk at the drug discovery stage influenced the most.In the drug discovery stage,inappropriate target selection had the greatest impact on the success rate of drug development.The lack of appropriate cell tissue or animal models had the greatest impact on the success rate of drug development from the discovery of a compound to the application for clinical trials.The difference in changes between nonclinical and clinical studies had the greatest impact on the success rate of drug development from early clinical studies to pivotal clinical studies.Incorrect dose selection had the greatest impact on the success rate of drug development from pivotal clinical studies to marketing authorization applications.The biggest impact from the marketing authorization application to the approval stage was inadequate communication with regulators.After investigating the weight of risk factors in the process of innovative drug development based on scientific methods,a new perspective for the risk control of new drug development and improving the research and development efficiency is provided.
文摘The emergence and spread of drug-recalcitrant Plasmodium falciparum parasites threaten to reverse the gains made in the fight against malaria.Urgent measures need to be taken to curb this impending challenge.The higher plant-derived sesquiterpene,quinoline alkaloids,and naphthoquinone natural product classes of compounds have previously served as phenomenal chemical scaffolds from which integral antimalarial drugs were developed.Historical successes serve as an inspiration for the continued investigation of plant-derived natural products compounds in search of novel molecular templates from which new antimalarial drugs could be developed.The aim of this study was to identify potential chemical scaffolds for malaria drug discovery following analysis of historical data on phytochemicals screened in vitro against P.falciparum.To identify these novel scaffolds,we queried an in-house manually curated database of plant-derived natural product compounds and their in vitro biological data.Natural products were assigned to different structural classes using NPClassifier.To identify the most promising chemical scaffolds,we then correlated natural compound class with bioactivity and other data,namely(i)potency,(ii)resistance index,(iii)selectivity index and(iv)physicochemical properties.We used an unbiased scoring system to rank the different natural product classes based on the assessment of their bioactivity data.From this analysis we identified the top-ranked natural product pathway as the alkaloids.The top three ranked super classes identified were(i)pseudoalkaloids,(ii)naphthalenes and(iii)tyrosine alkaloids and the top five ranked classes(i)quassinoids(of super class triterpenoids),(ii)steroidal alkaloids(of super class pseudoalkaloids)(iii)cycloeudesmane sesquiterpenoids(of super class triterpenoids)(iv)isoquinoline alkaloids(of super class tyrosine alkaloids)and(v)naphthoquinones(of super class naphthalenes).Launched chemical space of these identified classes of compounds was,by and large,distinct from that of‘legacy’antimalarial drugs.Our study was able to identify chemical scaffolds with acceptable biological properties that are structurally different from current and previously used antimalarial drugs.These molecules have the potential to be developed into new antimalarial drugs.
文摘Model-informed drug develop⁃ment(MIDD)is the application of a various math⁃ematical,statistical,and biological models to facilitate drug development,decision making and regulatory review.As a quantitative tool,MIDD approaches allow an integration of information obtained from non-clinical studies and clinical trials in a drug development program.General understandings of the underlying biology,patho⁃physiology,and pharmacology can also be incor⁃porated into the model.MIDD is centered on knowledge and inferences generated from inte⁃grated models of the physicochemical character⁃istics of a molecule,its disposition in the body,and its mechanism of action,and how the drug might affect a disease from both an efficacy and a safety perspective.MIDD approaches have the potential to significantly streamline drug develop⁃ment,by improving clinical trial efficiency,opti⁃mizing dose and regimen and waive unneces⁃sary clinical studies.This presentation will use cases studies to demonstrate how to apply MIDD in early phase of clinical trials.
文摘Immunosuppression is essential to ensure recipient and graft survivals after liver transplantation(LT). However, our understanding and management of the immune system remain suboptimal. Current immunosuppressive therapy cannot selectively inhibit the graft-specific immune response and entails a significant risk of serious side effects, i.e., among others, de novo cancers, infections, cardiovascular events, renal failure, metabolic syndrome, and late graft fibrosis, with progressive loss of graft function. Pharmacological research, aimed to develop alternative immunosuppressive agents in LT, is behind other solidorgan transplantation subspecialties, and, therefore, the development of new compounds and strategies should get priority in LT. The research trajectories cover mechanisms to induce T-cell exhaustion, to inhibit co-stimulation, to mitigate non-antigen-specific inflammatory response, and, lastly, to minimize the development and action of donor-specific antibodies. Moreover, while cellular modulation techniques are complex, active research is underway to foster the action of T-regulatory cells, to induce tolerogenic dendritic cells, and to promote the function of B-regulatory cells. We herein discuss current lines of research in clinical immunosuppression, particularly focusing on possible applications in the LT setting.
基金supported by the National Natural Science Foundation of China,No.82122009 (to JX)Science Research Foundation ofAier Eye Hospital Group,No.AM2001D1 (to JX)the Natural Science Foundation of Hunan Province,No.2020JJ5002 (to SJ)。
文摘Diabetic eye disease refers to a group of eye complications that occur in diabetic patients and include diabetic retinopathy, diabetic macular edema, diabetic cataracts, and diabetic glaucoma. However, the global epidemiology of these conditions has not been well characterized. In this study, we collected information on diabetic eye disease-related research grants from seven representative countries––the United States, China, Japan, the United Kingdom, Spain, Germany, and France––by searching for all global diabetic eye disease journal articles in the Web of Science and Pub Med databases, all global registered clinical trials in the Clinical Trials database, and new drugs approved by the United States, China, Japan, and EU agencies from 2012 to 2021. During this time period, diabetic retinopathy accounted for the vast majority(89.53%) of the 2288 government research grants that were funded to investigate diabetic eye disease, followed by diabetic macular edema(9.27%). The United States granted the most research funding for diabetic eye disease out of the seven countries assessed. The research objectives of grants focusing on diabetic retinopathy and diabetic macular edema differed by country. Additionally, the United States was dominant in terms of research output, publishing 17.53% of global papers about diabetic eye disease and receiving 22.58% of total citations. The United States and the United Kingdom led international collaborations in research into diabetic eye disease. Of the 415 clinical trials that we identified, diabetic macular edema was the major disease that was targeted for drug development(58.19%). Approximately half of the trials(49.13%) pertained to angiogenesis. However, few drugs were approved for ophthalmic(40 out of 1830;2.19%) and diabetic eye disease(3 out of 1830;0.02%) applications. Our findings show that basic and translational research related to diabetic eye disease in the past decade has not been highly active, and has yielded few new treatment methods and newly approved drugs.
基金funded in part by the National Natural Science Foundation of China(No.82371877)Advanced Talents and Science and Technology Innovation Foundation at Yangzhou University(No.137011856,HS).
文摘Ewing’s sarcoma(EWS)is a highly aggressive malignant bone tumor primarily affecting adolescents and young adults.Despite the efficacy of chemoradiotherapy in some cases,the cure rate for patients with metastatic and recurrent disease remains low.Therefore,there is an urgent need for innovative therapeutic approaches to address the challenges associated with EWS treatment.Epigenetic regulation,a crucial factor in physiological processes,plays a significant role in controlling cell proliferation,maintaining gene integrity,and regulating transcription.Recent studies highlight the importance of abnormal epigenetic regulation in the initiation and progression of EWS.A comprehensive understanding of the intricate interactions between EWS and aberrant epigenetic regulation is essential for advancing clinical drug development.This review aims to provide a comprehensive overview of both epigenetic targets implicated in EWS,integrating various therapeutic modalities to offer innovative perspectives for the clinical diagnosis and treatment of EWS.
基金Supported by The Science and Technology Program of Gansu Province,No.23JRRA1015.
文摘BACKGROUND Gastrointestinal tumor organoids serve as an effective model for simulating cancer in vitro and have been applied in basic biology and preclinical research.Despite over a decade of development and increasing research achievements in this field,a systematic and comprehensive analysis of the research hotspots and future trends is lacking.AIM To address this problem by employing bibliometric tools to explore the publication years,countries/regions,institutions,journals,authors,keywords,and references in this field.METHODS The literature was collected from Web of Science databases.CiteSpace-6.2R4,a widely used bibliometric analysis software package,was used for institutional analysis and reference burst analysis.VOSviewer 1.6.19 was used for journal cocitation analysis,author co-authorship and co-citation analysis.The‘online platform for bibliometric analysis(https://bibliometric.com/app)’was used to assess the total number of publications and the cooperation relationships between countries.Finally,we employed the bibliometric R software package(version R.4.3.1)in R-studio,for a comprehensive scientific analysis of the literature.RESULTS Our analysis included a total of 1466 publications,revealing a significant yearly increase in articles on the study of gastrointestinal tumor organoids.The United States(n=393)and Helmholtz Association(n=93)have emerged as the leading countries and institutions,respectively,in this field,with Hans Clevers and Toshiro Sato being the most contributing authors.The most influential journal in this field is Gastroenterology.The most impactful reference is"Long term expansion of epithelial organs from human colon,adenoma,adenocarcinoma,and Barrett's epithelium".Keywords analysis and citation burst analysis indicate that precision medicine,disease modeling,drug development and screening,and regenerative medicine are the most cutting-edge directions.These focal points were further detailed based on the literature.CONCLUSION This bibliometric study offers an objective and quantitative analysis of the research in this field,which can be considered as an important guide for next scientific research.
文摘Biology without governing principle makes predications impossible. Observations lead to some successful therapies, and to unexpected failures. Erwin Schr<span style="white-space:nowrap;">ö</span>dinger attempted to quantify biology with the concept of negative entropy. These insights lead to fundamental principles of biologic entropy. The quantification of negative entropy is difficult to calculate since the number of parts of the body and the way these parts are arranged is very large (atomistic disorder). There can be approximations that answer questions such as why females live longer, and why a lower body temperature predicts longevity. This concept can reveal the culprit of diabetes II;understanding the microbiome can reduce its entropy by increasing the entropy of its host. The real advantage of statistical entropy is finding new drugs and predicting viral mutations based on energetics and negative entropy. The misfolding of a protein will increase the entropy of an individual with the result of early death. The calculations of biologic entropy require the knowledge of each developmental step, and the statistical possibilities of the next step. If the step is crucial to maintain low entropy, a carrier protein will assure the energetics of the step is favorable. This protein is the target of new therapies.
文摘This study aimed to develop a guideline for therapeutic drug monitoring(TDM) of vancomycin. We adopted the new guideline definition from the Institute of Medicine(IOM), adhered closely to the six domains of the Appraisal of Guidelines for Research & Evaluation Ⅱ(AGREE Ⅱ), and made recommendations based on systematic reviews. We established a Guideline Steering Group and a Guideline Development Group, formulated 12 questions in the form of Population, Intervention, Comparison, Outcome(PICO) and completed a literature search. As far as we know, we will develop the first evidenced-based guideline for vancomycin TDM under the framework of the Grade of Recommendations Assessment, Development and Evaluation(GRADE).
基金funding from National Institutes of Health(No.1UG3TR003148-01)the American Heart Association(No.442611-NU-80922)+1 种基金California Institute for Regenerative Medicine(No.DISC2COVID19-11838)COVID-19 research funding from David Geffen School of Medicine at UCLA.
文摘There is a pressing need for effective therapeutics for coronavirus disease 2019(COVID-19),the respiratory disease caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)virus.The process of drug development is a costly and meticulously paced process,where progress is often hindered by the failure of initially promising leads.To aid this chal-lenge,in vitro human microphysiological systems need to be refined and adapted for mechanistic studies and drug screening,thereby saving valuable time and resources during a pandemic crisis.The SARS-CoV-2 virus attacks the lung,an organ where the unique three-dimensional(3D)structure of its functional units is critical for proper respiratory function.The in vitro lung models essentially recapitulate the distinct tissue structure and the dynamic mechanical and biological interactions between different cell types.Current model systems include Transwell,organoid and organ-on-a-chip or microphysiological systems(MPSs).We review models that have direct relevance toward modeling the pathology of COVID-19,including the processes of inflammation,edema,coagulation,as well as lung immune function.We also consider the practical issues that may influence the design and fabrication of MPS.The role of lung MPS is addressed in the context of multi-organ models,and it is discussed how high-throughput screening and artificial intelligence can be integrated with lung MPS to accelerate drug development for COVID-19 and other infectious diseases.
文摘Developments of drugs or natural products from plants are possibly made, simple to use and lower cost than modern drugs.The development processes can be started with studying local wisdom and literature reviews to choose the plants which have long been used in diverse areas, such as foods, traditional medicine, fragrances and seasonings.Then those data will be associated with scientific researches, namely plant collection and identification, phytochemical screening by gas chromatography-mass spectrometry,pharmacological study/review for their functions, and finally safety and efficiency tests in human.For safety testing, in vitro cell toxicity by cell viability assessment and in vitro testing of DNA breaks by the comet assay in human peripheral blood mononuclear cells can be performed.When active chemicals and functions containing plants were chosen with safety and efficacy for human uses, then, the potential medicinal natural products will be produced.Based on these procedures, the producing cost will be cheaper and the products can be evaluated for their clinical properties.Thus, the best and lowest-priced medicines and natural products can be distributed worldwide.
文摘The therapeutic landscape of metastatic colorectal cancer(mCRC)has changed substantially with the emergence of new molecularly targeted agents(MTA)usedas single agents or alongside standard chemotherapy.The use of these MTAs extended the overall survival ofpatients with mCRC to a level that current chemotherapeutics alone could not achieve.In addition,improvement in surgical techniques and ablation modalities offer cure to a limited subset of patients with mCRC andMTAs have been found to have a significant role heretoo,as they aid resectability.However,for the majority of patients,mCRC remains an invariably incurabledisease necessitating continued courses of combinedtreatment modalities.During the course of these treatments,either cytotoxic or biological,cancer cells maintain their ability to acquire mitogenic mutations whichrender them resistant to treatment.Key challengesremain to identify appropriate subsets of patients whowill most likely benefit from these new MTAs and effectively select these based on validated biomarkers.Moreover,better knowledge of the biology of colorectal cancer and the mechanisms via which it bypasses blockade of known signalling pathways will help us design better and more rational sequencing of these treatments,so that we can maximise the survivorship of mCRC patients.This review outlines treatment strategies for known molecular alterations with new MTAs and highlights some promising strategies.
文摘Alzheimer's disease (AD) is the most frequent cause of dementia in the western world. In clinical terms, AD is characterized by progres- sive cognitive decline that usually begins with memory impairment. As the disease progresses, AD inevitably affects all intellectual functions including executive functions, leading to complete dependence for basic activities of daily life and premature death.
文摘Drug development in oncology is undergoing a substantial shift nowadays. The drivers for this are multi-factorial. On the one side, drug development is performed more rationally than ever, profiting from the scientific advances in molecular biology in general and the elucidation of the various "omes" from genome to metabolome in particular.