Ferritin stores and releases iron ions in mammals.It is globally important as a drug nanocarrier.This is because of its unique hollow-spherical structure,desirable stability and biological properties.Novel drug-loadin...Ferritin stores and releases iron ions in mammals.It is globally important as a drug nanocarrier.This is because of its unique hollow-spherical structure,desirable stability and biological properties.Novel drug-loading approaches plus various functionalization approaches have been developed to improve ferritin in response to differing demands in disease treatments.Here,we critically review ferritin drug delivery and evaluate its diverse drug-loading and functionalization approaches,we:(1)Introduce basic structural and property information related to ferritin as a drug nanocarrier;(2)Contrast in detail the different means to load drugs and the selection of drug loading means;(3)Discuss multiple ferritin functionalization approaches,together with related advantages and potential risks;and,(4)Compare ferritin with alternative,commonly-used drug nanocarriers.We conclude that despite that no drugs based on ferritin are commercially available,the market potential for it is significant,and evaluate future research directions.Findings from this work will be of immediate benefit and interest to a wide range of researchers and manufacturers for drug delivery using ferritin.展开更多
Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunot...Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier(BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.展开更多
Pesticides,as the most common means of pest managements,have caused a series of problems such as pest resistance and environmental pollution.Aggregation-induced emission(AIE)polymers exhibit great potential in biologi...Pesticides,as the most common means of pest managements,have caused a series of problems such as pest resistance and environmental pollution.Aggregation-induced emission(AIE)polymers exhibit great potential in biological applications because their fluorescent intensities significantly enhance in the aggregated state.In this paper,an AIE star polymer including a tetraphenyl ethylene(TPE)core and poly(2-(dimethylamino)ethyl methacrylate)arms is designed and further developed as a multi-functional nanocarrier for agricultural pest control.The nanocarrier shows high water solubility,good size stability and AIE imaging ability.Meanwhile,the twisted AIE core and positively charged polymer arms make the nanocarrier efficiently co-load dinotefuran(DIN)and dsRNA via hydrogen bonds and electrostatic interactions,respectively.The AIE star polymer displays low toxicity and high fluorescence traceability.As a result,the nanocarrier co-loading with DIN and dsRNA exhibits a highly synergistic insecticidal effect with higher pest mortality compared to the separate delivery of DIN and dsRNA.This study develops the AIE star polymer to improve the efficiency of co-delivery of drug and dsRNA and proposes a new strategy toward efficient and synergistic pest control.展开更多
In recent years, cancer has become the number two cause of death around the world, and scientists have exploited various treatment maps. Calixarenes, with diversified features, have been widely applied into drug deliv...In recent years, cancer has become the number two cause of death around the world, and scientists have exploited various treatment maps. Calixarenes, with diversified features, have been widely applied into drug delivery systems, which can respond to multi-stimuli and exhibit excellent performance. In this mini-review, we summarize the recent advances on controlled drug delivery systems based on calixarenes, in the form of inclusion complexes, amphiphilic self-assembly nanocarriers including micelles, hydrogels, vesicles and liposomes, and supramolecular nanovalves on mesoporous silica nanomaterials.展开更多
In 2020, the MOE Key Laboratory of Macromolecular Synthesis and Functionalization in Zhejiang University had made progresses in several aspects. First, a series of metal-free organoboron catalysts had been designed an...In 2020, the MOE Key Laboratory of Macromolecular Synthesis and Functionalization in Zhejiang University had made progresses in several aspects. First, a series of metal-free organoboron catalysts had been designed and synthesized facilely, exhibiting outstanding reactivity, thermalstability and productivity in different kinds of polymerization and cycloaddition reactions. Second, a variety of chalcogen(O, S, Se)-rich polymers had been synthesized via organocatalysis and fabricated to be the ionic conductive and photoluminescent materials. Third, diverse microenvironment-sensitive nanoparticles had been designed,and novel strategies had been realized, to enhance the therapeutic efficacy in cancer as well as biofilmassociated infections. Fourth, m6 A modification on cellular transcriptome-wide messenger RNA had been successfully mapped at single base resolution using a metabolic labeling method. Fifth, a hydrogel-based robot had been developed, showing swift locomotion as a response to dynamic light stimulations. Sixth,the conformation-size scaling law and the conformation evolution map of 2 D macromolecules in solution had been elucidated experimentally, in the single-layer graphene oxide model. Seventh, semitransparent polymer solar cells, promising as building-integrated photovoltaics, have been developed with the fine balance among power conversion efficiency, visible light transparency and infrared photon radiation rejection. Finally, long-range ordered bulk-heterojunctions of organic semiconductors had been achieved,and their superior optoelectronic properties and potential application in photoelectric conversion had been revealed. The related work progresses are reviewed in this paper.展开更多
基金funded by joint PhD Scholarship Scheme of the University of Adelaide and Institute of Process EngineeringChinese Academy of Sciences+1 种基金the National Natural Science Foundation of China(Grant No.21576267)Beijing Natural Science Foundation(Grant Number 2162041).
文摘Ferritin stores and releases iron ions in mammals.It is globally important as a drug nanocarrier.This is because of its unique hollow-spherical structure,desirable stability and biological properties.Novel drug-loading approaches plus various functionalization approaches have been developed to improve ferritin in response to differing demands in disease treatments.Here,we critically review ferritin drug delivery and evaluate its diverse drug-loading and functionalization approaches,we:(1)Introduce basic structural and property information related to ferritin as a drug nanocarrier;(2)Contrast in detail the different means to load drugs and the selection of drug loading means;(3)Discuss multiple ferritin functionalization approaches,together with related advantages and potential risks;and,(4)Compare ferritin with alternative,commonly-used drug nanocarriers.We conclude that despite that no drugs based on ferritin are commercially available,the market potential for it is significant,and evaluate future research directions.Findings from this work will be of immediate benefit and interest to a wide range of researchers and manufacturers for drug delivery using ferritin.
文摘Delivering therapeutics to the central nervous system(CNS) and brain-tumor has been a major challenge. The current standard treatment approaches for the brain-tumor comprise of surgical resection followed by immunotherapy, radiotherapy, and chemotherapy. However, the current treatments are limited in providing significant benefits to the patients and despite recent technological advancements; brain-tumor is still challenging to treat. Brain-tumor therapy is limited by the lack of effective and targeted strategies to deliver chemotherapeutic agents across the blood-brain barrier(BBB). The BBB is the main obstacle that must be overcome to allow compounds to reach their targets in the brain. Recent advances have boosted the nanotherapeutic approaches in providing an attractive strategy in improving the drug delivery across the BBB and into the CNS. Compared to conventional formulations, nanoformulations offer significant ad vantages in CNS drug delivery approaches. Considering the above facts, in this review, the physiological/anatomical features of the brain-tumor and the BBB are briefly discussed. The drug transport mechanisms at the BBB are outlined. The approaches to deliver chemotherapeutic drugs across the CNS into the brain-tumor using nanocarriers are summarized. In addition, the challenges that need to be addressed in nanotherapeutic approaches for their enhanced clinical application in brain-tumor therapy are discussed.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No.52130309)China Postdoctoral Science Foundation(No.2021M700349).
文摘Pesticides,as the most common means of pest managements,have caused a series of problems such as pest resistance and environmental pollution.Aggregation-induced emission(AIE)polymers exhibit great potential in biological applications because their fluorescent intensities significantly enhance in the aggregated state.In this paper,an AIE star polymer including a tetraphenyl ethylene(TPE)core and poly(2-(dimethylamino)ethyl methacrylate)arms is designed and further developed as a multi-functional nanocarrier for agricultural pest control.The nanocarrier shows high water solubility,good size stability and AIE imaging ability.Meanwhile,the twisted AIE core and positively charged polymer arms make the nanocarrier efficiently co-load dinotefuran(DIN)and dsRNA via hydrogen bonds and electrostatic interactions,respectively.The AIE star polymer displays low toxicity and high fluorescence traceability.As a result,the nanocarrier co-loading with DIN and dsRNA exhibits a highly synergistic insecticidal effect with higher pest mortality compared to the separate delivery of DIN and dsRNA.This study develops the AIE star polymer to improve the efficiency of co-delivery of drug and dsRNA and proposes a new strategy toward efficient and synergistic pest control.
基金the National Natural Science Foundation of China (Nos. 21272093 and 51473061)the Fundamental Research Funds for the Central Universities (No. JCKY-QKJC05) for financial support
文摘In recent years, cancer has become the number two cause of death around the world, and scientists have exploited various treatment maps. Calixarenes, with diversified features, have been widely applied into drug delivery systems, which can respond to multi-stimuli and exhibit excellent performance. In this mini-review, we summarize the recent advances on controlled drug delivery systems based on calixarenes, in the form of inclusion complexes, amphiphilic self-assembly nanocarriers including micelles, hydrogels, vesicles and liposomes, and supramolecular nanovalves on mesoporous silica nanomaterials.
基金support from the SCI-TECH Academy of Zhejiang University。
文摘In 2020, the MOE Key Laboratory of Macromolecular Synthesis and Functionalization in Zhejiang University had made progresses in several aspects. First, a series of metal-free organoboron catalysts had been designed and synthesized facilely, exhibiting outstanding reactivity, thermalstability and productivity in different kinds of polymerization and cycloaddition reactions. Second, a variety of chalcogen(O, S, Se)-rich polymers had been synthesized via organocatalysis and fabricated to be the ionic conductive and photoluminescent materials. Third, diverse microenvironment-sensitive nanoparticles had been designed,and novel strategies had been realized, to enhance the therapeutic efficacy in cancer as well as biofilmassociated infections. Fourth, m6 A modification on cellular transcriptome-wide messenger RNA had been successfully mapped at single base resolution using a metabolic labeling method. Fifth, a hydrogel-based robot had been developed, showing swift locomotion as a response to dynamic light stimulations. Sixth,the conformation-size scaling law and the conformation evolution map of 2 D macromolecules in solution had been elucidated experimentally, in the single-layer graphene oxide model. Seventh, semitransparent polymer solar cells, promising as building-integrated photovoltaics, have been developed with the fine balance among power conversion efficiency, visible light transparency and infrared photon radiation rejection. Finally, long-range ordered bulk-heterojunctions of organic semiconductors had been achieved,and their superior optoelectronic properties and potential application in photoelectric conversion had been revealed. The related work progresses are reviewed in this paper.