Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorti...Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells.展开更多
To establish a cytologic expressing system of rat glutathione S-transferase pi (GST-pi) cDNA for detecting the resistance of HeLa cells to anticancer drugs. Methods The assessment was made with various anticancer dr...To establish a cytologic expressing system of rat glutathione S-transferase pi (GST-pi) cDNA for detecting the resistance of HeLa cells to anticancer drugs. Methods The assessment was made with various anticancer drugs (adriamycin, mitomycin, cisplatinum and vincristine) that showed different cytotoxicities in transfectant HeLa cells with pSV-GT containing rat GST-pi cDNA (HeLa/pSV-GT) or control pSV-neo (HeLa/pSV-neo). Expression levels of GST-pi mRNA in HeLa/pSV-GT and HeLa/pSV-neo were measured by in situ hybridization using Digoxin-labelled cDNA probe. Results HeLa/pSV-GT expressed significantly high degree of GST-pi mRNA, whereas both HeLa/pSV-neo and HeLa cells had very low expression. Cytotoxicities of HeLa/pSV-GT and HeLa/pSV-neo with 4 anticancer drugs were measured by MTT assay. Drug concentrations for yielding 50% inhibition (IC50) in HeLa/pSV-GT by adriamycin, mitomycin and cisplatinum were 70.13 靏/mL, 10.95 靏/mL and 16.52 靏/mL, respectively. In contrast, IC50 in HeLa/pSV-neo was 10.34 靏/mL, 7.48 靏/mL and 13.70 靏/mL, respectively. The cytotoxicities of vincristine on both HeLa/pSV-GT and HeLa/pSV-neo were not significantly different. Conclusions Our findings suggest that HeLa/pSV-GT containing rat GST-pi cDNA is resistant to some anticancer drugs due to overexpression of GST-pi. Also, HeLa/pSV-GT cell line could serve as a useful cytogenetic model for further research.展开更多
Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was ...Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells.展开更多
Background: A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. However, the continuous spread of P. falciparum res...Background: A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. However, the continuous spread of P. falciparum resistance to anti-malarial drugs is raising a serious problem in controlling Malaria to the vulnerable children’s immune system. In recent studies, Plasmodium falciparum Kelch 13 propeller gene (Pfk13) has been reported to develop resistance to artemisinin in South Asia. In this study, we checked Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) involved in chloroquine (CQ) resistance. Method: In this study, archived 280 samples were collected from Alupe primary school children in Busia, Western Kenya from May, 2016 to November, 2016. Genomic DNA was extracted using the MightyPrep reagent. The samples were investigated for P. falciparum positivity out of which 67 of them tested positive giving a prevalence rate of 24%. The sixty-seven were subjected to PCR amplification for the molecular marker resistance to Pfcrt. After PCR amplification, the amplicons were purified and sequenced using Sanger Sequencing. The sequence data were analyzed using BioEdit software to identify point mutations. Results: 14 samples sequences were analyzed on Bioedit software giving the following amino acid changes F76C, Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F). New mutations have been reported at position 76 leading to an amino acid change, one of Pfcrt gold standard biomarkers. However, amino acid changes Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F are newly reported giving an increase in Pfcrt prevalence of concern from zero to 5.0%. A phylogenetic evolutionary relationship was constructed as shown below. Generally, the results showed a continuous resistance of P.falciparum to Pfcrt which calls for robust continuous monitoring and surveillance. Conclusion: Due to the increase of the resistant Pfcrt gene prevalence, continuous development of new mutants against chloroquine indicates that there is need to repurpose anti-malarial drugs for future partner drugs.展开更多
[目的]探讨TGF-β1对胃癌细胞株SNU-601/WT和耐药性胃癌细胞株SNU-601/cis 2生长p 16,cyclin D 1蛋白表达的影响.[方法]将经TGF-β1处理SNU-601/WT,SNU-601/cis 2细胞作为实验组,未经处理的作为对照组,利用MTT法检测TGF-β1对两组细胞...[目的]探讨TGF-β1对胃癌细胞株SNU-601/WT和耐药性胃癌细胞株SNU-601/cis 2生长p 16,cyclin D 1蛋白表达的影响.[方法]将经TGF-β1处理SNU-601/WT,SNU-601/cis 2细胞作为实验组,未经处理的作为对照组,利用MTT法检测TGF-β1对两组细胞生存率的影响,并利用免疫细胞化学方法检测各组细胞内p 16,cyclin D 1蛋白表达情况.[结果]实验组SNU-601/WT,SNU-601/cis 2细胞生存率呈时间依赖性下降,与对照组比较均有显著性差异;SUN-601/WT,SNU-601/cis 2实验组细胞内p 16蛋白表达呈时间依赖性增强,而cyclin D 1蛋白表达则无明显变化.[结论]TGF-β1具有抑制SNU-601/WT胃癌细胞和SNU-601/cis 2耐药性胃癌细胞生长作用,其机制可能与增强p 16蛋白表达有关,而与cyclin D 1蛋白无明显相关性.展开更多
AIM:There are conflicting data about p53 function on cellular sensitivity to the cytotoxic action of 5-fluorouracil (5-FU). Therefore the objective of this study was to determine the combined effects of adenovirus-med...AIM:There are conflicting data about p53 function on cellular sensitivity to the cytotoxic action of 5-fluorouracil (5-FU). Therefore the objective of this study was to determine the combined effects of adenovirus-mediated wild-type (wt) p53 gene transfer and 5-FU chemotherapy on pancreatic cancer cells with different p53 gene status. METHODS:Human pancreatic cancer cell lines Capan-1^(p53mut), Capan-2^(p53wt),FAMPAC^(p53mut),PANC1^(p53mut),and rat pancreatic cancer cell lines AS^(p53wt) and DSL6A^(p53null) were used for in vitro studies.Following infection with different ratios of Ad- p53-particles (MOI) in combination with 5-FU,proliferation of tumor cells and apoptosis were quantified by cell proliferation assay (WST-1) and FACS (PI-staining).In addition,DSL6A syngeneic pancreatic tumor cells were inoculated subcutaneously in to Lewis rats for in vivo studies. Tumor size,apoptosis (TUNEL) and survival were determined. RESULTS:Ad-p53 gene transfer combined with 5-FU significantly inhibited tumor cell proliferation and substantially enhanced apoptosis in all four cell lines with an alteration in the p53 gene compared to those two cell lines containing wt-p53.In vivo experiments showed the most effective tumor regression in animals treated with Ad-p53 plus 5-FU.Both in vitro and in vivo analyses revealed that a sublethal dose of Ad-p53 augmented the apoptotic response induced by 5-FU. CONCLUSION:Our results suggest that Ad-p53 may synergistically enhance 5-FU-chemosensitivity most strikingly in pancreatic cancer cells lacking p53 function.These findings illustrate that the anticancer efficacy of this combination treatment is dependent on the p53 gene status of the target tumor cells.展开更多
Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the comp...Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of multidrug resistance-related protein (Mrp) increased slightly. These results indicated that the drug re-sistance associated with mt-p53 gene might be somewhat correlated with MRP/Mrp but not with MDR1/Pgp. It was possible to modify the tumor drug resistance by changing status of p53 gene.展开更多
Background Intractable epilepsy may be due to multidrug resistance induced by conventional antiepileptic drugs. The phenomenon is sometimes associated with an overexpression of multidrug resistance gene 1 (MDR 1). T...Background Intractable epilepsy may be due to multidrug resistance induced by conventional antiepileptic drugs. The phenomenon is sometimes associated with an overexpression of multidrug resistance gene 1 (MDR 1). The purpose of this study was to determine if the overexpression of MDR 1 could be induced in astrocytes from rat brains in vitro using antiepileptic drugs.Methods Astrocyte cell cultures from postnatal Wistar rats (within 24 hours of birth) were established. Different concentrations of the antiepileptic drugs phenytoin, phenobarbital, carbamazepine, and valproic acid were added to the cultures for 10, 20, or 30 days. The expression of P-glycoprotein (Pgp), the protein product of MDR 1, was investigated with immunocytochemistry. Results Less than 5% of normal, untreated astrocytes had detectable Pgp staining at any time point. Phenytoin, phenobarbital, carbamazepine, and valproic acid induced the overexpression of Pgp in astrocytes in a dose- and time-dependent manner. Significantly higher levels of Pgp staining were detected at therapeutic concentrations of certain antiepileptic drugs (20 μg/ml phenobarbital, 40 μg/ml phenobarbital, and 20 μg/ml phenytoin) on day 30. Upregulation of Pgp was detected when using higher concentrations of phenytoin, phenobarbital, and valproic acid on day 20 and when using higher concentrations of any of the four antiepileptic drugs on day 30. Conclusions Treatment with antiepileptic drugs may contribute to the overexpression in astrocytes of MDR 1 and its protein product, Pgp. The mechanism leading to MDR must be considered in patients undergoing long-term treatment with antiepileptic drugs.展开更多
文摘Summary: The expression and functional activity of multiple drug resistance (MDR1) gene in human normal bone marrow CD34+ cells was observed. Human normal bone marrow CD34+ cells were enriched with magnetic cell sorting (MACS) system, and then liposome-mediated MDR1 gene was transferred into bone marrow CD34+ cells. Fluorescence-activated cell sorter was used to evaluate the expression and functional activity of P-glycoprotein (P-gp) encoded by MDR1 gene. It was found that the purity of bone marrow CD34+ cells was approximately (91±4.56) % and recovery rate was (72.3±2.36) % by MACS. The expression of P-gp in the transfected CD34+cells was obviously higher than that in non-transfected CD34+ cells. The amount of P-gp in non-transfected CD34+ cells was (11.2±2.2) %, but increased to (23.6±2.34) % 48 h after gene transfection (P<0.0l). The amount of P-gp was gradually decreased to the basic level one week later. The accumulation and extrusion assays showed that the overexpression of P-gp could efflux Rh-123 out of cells and there was low fluorescence within the transfected cells. The functional activity of P-gp could be inhibited by 10 μg/ml verapamil. It was suggested that the transient and highly effective expression and functional activity of P-gp could be obtained by liposome-mediated MRD1 transferring into human normal bone marrow CD34+ cells.
基金the National Natural Science Foundation of China.
文摘To establish a cytologic expressing system of rat glutathione S-transferase pi (GST-pi) cDNA for detecting the resistance of HeLa cells to anticancer drugs. Methods The assessment was made with various anticancer drugs (adriamycin, mitomycin, cisplatinum and vincristine) that showed different cytotoxicities in transfectant HeLa cells with pSV-GT containing rat GST-pi cDNA (HeLa/pSV-GT) or control pSV-neo (HeLa/pSV-neo). Expression levels of GST-pi mRNA in HeLa/pSV-GT and HeLa/pSV-neo were measured by in situ hybridization using Digoxin-labelled cDNA probe. Results HeLa/pSV-GT expressed significantly high degree of GST-pi mRNA, whereas both HeLa/pSV-neo and HeLa cells had very low expression. Cytotoxicities of HeLa/pSV-GT and HeLa/pSV-neo with 4 anticancer drugs were measured by MTT assay. Drug concentrations for yielding 50% inhibition (IC50) in HeLa/pSV-GT by adriamycin, mitomycin and cisplatinum were 70.13 靏/mL, 10.95 靏/mL and 16.52 靏/mL, respectively. In contrast, IC50 in HeLa/pSV-neo was 10.34 靏/mL, 7.48 靏/mL and 13.70 靏/mL, respectively. The cytotoxicities of vincristine on both HeLa/pSV-GT and HeLa/pSV-neo were not significantly different. Conclusions Our findings suggest that HeLa/pSV-GT containing rat GST-pi cDNA is resistant to some anticancer drugs due to overexpression of GST-pi. Also, HeLa/pSV-GT cell line could serve as a useful cytogenetic model for further research.
基金supported by Educational Commission of Liaoning Province, China (No. 20060985)
文摘Objective:To observe the reversion of multi-drug resistance by proteasome inhibitor bortezomib in K562/DNR cell line and to analyze the possible mechanism of reversion of multidrug-resistance.Methods:MTT method was used to determine the drug resistance of K562/DNR cells and the cellular toxicity of bortezomib.K562/DNR cells were cultured for 12 hours,24 hours and 36 hours with 100 μg/ml DNR only or plus 4 μg/L bortezomib.The expressions of NF-κB,IκB and P-gp of K562/DNR were detected with Western blot method,the activity of NF-κB was tested by ELISA method and the apoptosis rate was observed in each group respectively.Results:The IC50 of DNR on cells of K562/S and K562/DNR groups were 1.16 μg/ml and 50.43 μg/mL,respectively.The drug-resistant fold was 43.47.The IC10 of PS-341 on Cell strain K562/DNR was 4 μg/L.Therefore,4 μg/L was selected as the concentration for PS-341 to reverse drug-resistance in this study.DNR induced down-regulation of IκB expression,up-regulation of NF-κB and P-gp expression.After treatment with PS-341,a proteasome inhibitor,the IκB degradation was inhibited,IκB expression increased,NF-κB and P-gp expression decreased in a time dependent manner.Compared to DNR group,the NF-κB p65 activity of DNR+PS-341 group was decreased.Compared to corresponding DNR group,DNR induced apoptosis rate increases after addition of PS-341 in a time dependent manner.Conclusion:Proteasome inhibitor bortezomib can convert the leukemia cell drug resistance.The mechanism may be that bortezomib decreases the degradation of IκB and the expression of NF-κB and P-gp,therefore induces the apoptosis of multi-drug resistant cells.
文摘Background: A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum. However, the continuous spread of P. falciparum resistance to anti-malarial drugs is raising a serious problem in controlling Malaria to the vulnerable children’s immune system. In recent studies, Plasmodium falciparum Kelch 13 propeller gene (Pfk13) has been reported to develop resistance to artemisinin in South Asia. In this study, we checked Plasmodium falciparum chloroquine resistance transporter gene (Pfcrt) involved in chloroquine (CQ) resistance. Method: In this study, archived 280 samples were collected from Alupe primary school children in Busia, Western Kenya from May, 2016 to November, 2016. Genomic DNA was extracted using the MightyPrep reagent. The samples were investigated for P. falciparum positivity out of which 67 of them tested positive giving a prevalence rate of 24%. The sixty-seven were subjected to PCR amplification for the molecular marker resistance to Pfcrt. After PCR amplification, the amplicons were purified and sequenced using Sanger Sequencing. The sequence data were analyzed using BioEdit software to identify point mutations. Results: 14 samples sequences were analyzed on Bioedit software giving the following amino acid changes F76C, Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F). New mutations have been reported at position 76 leading to an amino acid change, one of Pfcrt gold standard biomarkers. However, amino acid changes Y66H, L70A, Y58C, T59V, V65I, P67L, T81L, Y60S, Y66S, P67T and I71F are newly reported giving an increase in Pfcrt prevalence of concern from zero to 5.0%. A phylogenetic evolutionary relationship was constructed as shown below. Generally, the results showed a continuous resistance of P.falciparum to Pfcrt which calls for robust continuous monitoring and surveillance. Conclusion: Due to the increase of the resistant Pfcrt gene prevalence, continuous development of new mutants against chloroquine indicates that there is need to repurpose anti-malarial drugs for future partner drugs.
文摘[目的]探讨TGF-β1对胃癌细胞株SNU-601/WT和耐药性胃癌细胞株SNU-601/cis 2生长p 16,cyclin D 1蛋白表达的影响.[方法]将经TGF-β1处理SNU-601/WT,SNU-601/cis 2细胞作为实验组,未经处理的作为对照组,利用MTT法检测TGF-β1对两组细胞生存率的影响,并利用免疫细胞化学方法检测各组细胞内p 16,cyclin D 1蛋白表达情况.[结果]实验组SNU-601/WT,SNU-601/cis 2细胞生存率呈时间依赖性下降,与对照组比较均有显著性差异;SUN-601/WT,SNU-601/cis 2实验组细胞内p 16蛋白表达呈时间依赖性增强,而cyclin D 1蛋白表达则无明显变化.[结论]TGF-β1具有抑制SNU-601/WT胃癌细胞和SNU-601/cis 2耐药性胃癌细胞生长作用,其机制可能与增强p 16蛋白表达有关,而与cyclin D 1蛋白无明显相关性.
文摘AIM:There are conflicting data about p53 function on cellular sensitivity to the cytotoxic action of 5-fluorouracil (5-FU). Therefore the objective of this study was to determine the combined effects of adenovirus-mediated wild-type (wt) p53 gene transfer and 5-FU chemotherapy on pancreatic cancer cells with different p53 gene status. METHODS:Human pancreatic cancer cell lines Capan-1^(p53mut), Capan-2^(p53wt),FAMPAC^(p53mut),PANC1^(p53mut),and rat pancreatic cancer cell lines AS^(p53wt) and DSL6A^(p53null) were used for in vitro studies.Following infection with different ratios of Ad- p53-particles (MOI) in combination with 5-FU,proliferation of tumor cells and apoptosis were quantified by cell proliferation assay (WST-1) and FACS (PI-staining).In addition,DSL6A syngeneic pancreatic tumor cells were inoculated subcutaneously in to Lewis rats for in vivo studies. Tumor size,apoptosis (TUNEL) and survival were determined. RESULTS:Ad-p53 gene transfer combined with 5-FU significantly inhibited tumor cell proliferation and substantially enhanced apoptosis in all four cell lines with an alteration in the p53 gene compared to those two cell lines containing wt-p53.In vivo experiments showed the most effective tumor regression in animals treated with Ad-p53 plus 5-FU.Both in vitro and in vivo analyses revealed that a sublethal dose of Ad-p53 augmented the apoptotic response induced by 5-FU. CONCLUSION:Our results suggest that Ad-p53 may synergistically enhance 5-FU-chemosensitivity most strikingly in pancreatic cancer cells lacking p53 function.These findings illustrate that the anticancer efficacy of this combination treatment is dependent on the p53 gene status of the target tumor cells.
文摘Human mutant-type (mt) p53 cDNA was synthesized and cloned from human lung cancer cell line GL containing mt-p53 gene by using polymerase chain reaction (PCR). It was confirmed that the mt-p53 cDNA con-tained the complete coding sequence of p53 gene but mutated at codon 245 (G→T) and resulted in glycine to cysteine by sequencing analysis. The retroviral vector pD53M of the mt-p53 was constructed and introduced into the drug-sen-sitive human lung cancer cells GAO in which p53 gene did not mutate. The transfected GAO cells strongly expressed mutant-type p53 protein by immunohistochemistry, showing that pD53M vector could steadily express in GAO cells. The drug resistance to several anticancer agents of GAO cells infected by pD53M increased in varying degrees, with the highest increase of 4-fold, in vitro and in vivo. By quantitative PCR and flow cytometry (FCM) analyses, the expression of MDR1 gene and the activity of P-glycoprotein (Pgp) did not increase, the expression of MRP gene and the activity of multidrug resistance-related protein (Mrp) increased slightly. These results indicated that the drug re-sistance associated with mt-p53 gene might be somewhat correlated with MRP/Mrp but not with MDR1/Pgp. It was possible to modify the tumor drug resistance by changing status of p53 gene.
文摘Background Intractable epilepsy may be due to multidrug resistance induced by conventional antiepileptic drugs. The phenomenon is sometimes associated with an overexpression of multidrug resistance gene 1 (MDR 1). The purpose of this study was to determine if the overexpression of MDR 1 could be induced in astrocytes from rat brains in vitro using antiepileptic drugs.Methods Astrocyte cell cultures from postnatal Wistar rats (within 24 hours of birth) were established. Different concentrations of the antiepileptic drugs phenytoin, phenobarbital, carbamazepine, and valproic acid were added to the cultures for 10, 20, or 30 days. The expression of P-glycoprotein (Pgp), the protein product of MDR 1, was investigated with immunocytochemistry. Results Less than 5% of normal, untreated astrocytes had detectable Pgp staining at any time point. Phenytoin, phenobarbital, carbamazepine, and valproic acid induced the overexpression of Pgp in astrocytes in a dose- and time-dependent manner. Significantly higher levels of Pgp staining were detected at therapeutic concentrations of certain antiepileptic drugs (20 μg/ml phenobarbital, 40 μg/ml phenobarbital, and 20 μg/ml phenytoin) on day 30. Upregulation of Pgp was detected when using higher concentrations of phenytoin, phenobarbital, and valproic acid on day 20 and when using higher concentrations of any of the four antiepileptic drugs on day 30. Conclusions Treatment with antiepileptic drugs may contribute to the overexpression in astrocytes of MDR 1 and its protein product, Pgp. The mechanism leading to MDR must be considered in patients undergoing long-term treatment with antiepileptic drugs.