Background: Infections in ICU’s patients are known to often originate from the colonization of wounds by the patient’s endogenous microbiota, and to eventually lead to secondary sepsis. Aim: to compare in vitro the ...Background: Infections in ICU’s patients are known to often originate from the colonization of wounds by the patient’s endogenous microbiota, and to eventually lead to secondary sepsis. Aim: to compare in vitro the direct and residual effects after different exposure times of 4% chlorhexidine, and of 0.1% and 0.04% polyhexanide (in gel and solution forms), on ATCC-microorganisms, and too, on bacterial strains obtained from ICU patients. Methods: We used wild multi-drug resistant strains recently obtained from the wounds of patients hospitalized at ICU and reference strains from the American Type Culture Collection (ATCC). Chlorhexidine 4% was studied as a reference solution. The direct and residual effects of the 0.1% and 0.04% polyhexanide, in gel and solution forms, were analyzed using cotton germ carriers. To evaluate the direct effect, we exposed the strains to the antiseptic. To assess the residual effect, the germ-carriers were impregnated with antiseptic and were allowed to dry before we contaminated them. We inoculated the germ carriers in a culture medium with an inhibitor of antiseptic effect to count the number of surviving microorganisms. Findings: 0.1% Polyhexanide solution proved a direct and residual efficacy after 24 hours equivalent to 4% chlorhexidine. Is very important to highlight that this great efficacy did not change according to whether they were ATCC or multidrug-resistant strains. Conclusions: 0.1% polyhexanide demonstrated a great direct and residual efficacy (like 4% chlorhexidine), against multi-drug resistant strains isolated from ICU’s patients. Moreover, due to its few cytotoxicity against keratinocytes and fibroblasts can be an optimal antiseptic for burns, wounds or ulcers.展开更多
This study aimed to evaluate the antibacterial activity of flavonoids extracted from two Libyan brown algae namely Cystoseira compressa and Padina pavonica using microwave-assisted extraction method against pathogenic...This study aimed to evaluate the antibacterial activity of flavonoids extracted from two Libyan brown algae namely Cystoseira compressa and Padina pavonica using microwave-assisted extraction method against pathogenic bacteria isolated from meat, meat products, milk and dairy products (Staphylococcus aureus subsp. aureus (5 isolates), Bacillus cereus (3 isolates), Bacillus pumilus (1 isolate), Salmonella enterica subsp. enteric (4 isolates) and Enterohaemor-rhagic Escherichia coli O157 (EHEC O157) (4 isolates)). All of these isolates were muti-drug resistant with high MAR index. The results showed that C. compressa extract exhibited better and stronger antibacterial activities against the seventeen tested isolates with inhibition zones diameter ranged from 14 - 22 mm compared to P. pavonica extract which showed positive effect against 9 isolates with low inhibition zone ranged from 11 - 16.5 mm. Flavonoids extracted from C. compressa also displayed the best spectrum of bactericidal effect with a ratio MBC/MIC ≤ 4 obtained on all susceptible tested bacterial strains. Flavonoids and proanthocyanidins significantly contributed to the antibacterial properties. The mode of action of these active extracts is under investigation.展开更多
OBJECTIVE:To evaluate the efficacy and safety of Buzhong Yiqi decoction(补中益气汤,BZYQ)in the treatment of hospital-acquired pneumonia(HAP)with multi-drug-resistant bacteria(MDRB).METHODS:This 28-day study was conduc...OBJECTIVE:To evaluate the efficacy and safety of Buzhong Yiqi decoction(补中益气汤,BZYQ)in the treatment of hospital-acquired pneumonia(HAP)with multi-drug-resistant bacteria(MDRB).METHODS:This 28-day study was conducted at 5 clinical centers in Shanghai.The eligible patients were randomly assigned(1∶1)into the intervention group(BZYQ plus conventional Western Medicine therapy)and control group(conventional Western Medicine therapy).The primary outcomes were the clinical response,clinical pulmonary infection score(CPIS),and microbiologic response.The secondary outcomes were the 28-day allcause mortality(ACM),Acute Physiology and Chronic Health EvaluationⅡ(APACHEⅡ)score,ventilator weaning rate,length of mechanical ventilation(MV),length of hospital stay,and changes of infection indicators.RESULTS:Altogether 83 subjects in the intervention group and 85 subjects in the control group were analyzed.The clinical success rate(48.2%)and the pathogen eradication rate(59.0%)of the intervention group were all better than those of the control group(32.9%and 38.9%,respectively)with statistically significant differences(P<0.05).The CPIS score of the intervention group(8.9±1.7)was lower than that of the control group(9.6±2.5)(P<0.05).The length of MV in the intervention group[(13.7±6.4)d]was significantly shorter than that of the control group[(17.2±7.2)d](P<0.05).The 28-day ACM of the intervention group(13.33%)was lower than that of the control group(21.2%)with no statistically significant difference(P>0.05).The differences between two groups in ventilator weaning rate,length of hospital stay,and APACHEⅡscore were not statistically significant(P>0.05).The intervention group displayed decreases in white blood cell count,C-reactive protein,neutrophil percentage,and procalcitonin at day 28 compared with baseline(P<0.05).No serious adverse events occurred in either group during the 28-day follow-up.CONCLUSION:BZYQ may be an effective therapeutic option for the management of HAP with MDRB.展开更多
AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collecte...AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.展开更多
Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, hos...Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.展开更多
Objective:The acceptability of herbal remedies for alleviating discomforts and ill-health has become very popular, on the account of the increasing cost of allopathic medicine for personal health maintenance.The obser...Objective:The acceptability of herbal remedies for alleviating discomforts and ill-health has become very popular, on the account of the increasing cost of allopathic medicine for personal health maintenance.The observable non-adherence of herbalists to the established World Health Organization(WHO) / National Agency for Food and Drug Administration Control(NAFDAC) regulations for the quality control of herbal medicines is an issue for concern.In view of this,34 popular and widely consumed crude herbal remedies in southwestern,Nigeria were screened for compliance with standard limits for bacterial contamination,bacteria flora and their antibiotic susceptibility pattern.Methods:Isolates recovered from samples were identified using the cultural, morphological and biochemical characteristics.They were also tested for drug sensitivity using standard procedures. Results:A heavy bacteria load ranging from 3.00×10~3-9.58×10~5 CFU/ML and 1.20×10~5- 5.41×10~5 CFU/ML was observed for water and spirit extracted preparations respectively.The bacteria flora cum contaminants were:Staphylococcus aureus,Bacillus cereus,Bacillus subtilis,Pseudomonas aeruginosa, Micrococcus luteus,Lactobacillus plantarum,Klebsiella pneumoniae,Escherichia coli,streptococcus,Shigella, Neisseria,Arthrobacter,Kurthia and Clostridium species.All the isolates were multi-drug resistant(MDR) strains.Conclusion:The crude herbal preparations consumed in Nigeria failed to comply with the internationally recognized standards regarding bacteria load and flora.The presence of MDR pathogens is of greatest concern. It poses a great risk to consumers health and could be a source of introducing MDR organisms into the human population.There is the need for the enforcement of established guidelines to ensure the safety of these preparations.展开更多
In the present manuscript it was presented whether spreading of antibiotic resistant bacterial groups in environment could be monitored by our newly developed method by enumerating antibiotic resistant bacterial group...In the present manuscript it was presented whether spreading of antibiotic resistant bacterial groups in environment could be monitored by our newly developed method by enumerating antibiotic resistant bacterial groups in various biological wastes and composts. Although the numbers were not so high, diverse kinds of colistin resistant bacteria (25 mg·L<sup>-1</sup><sup></sup>) were included in row cattle feces (1.78 × 10<sup>4</sup> MPN g<sup>-1</sup>) and cattle feces manure (>3.84 × 10<sup>4</sup> MPN g<sup>-1</sup>). Compost originated from leftover food (>44.8 × 10<sup>4</sup> MPN g<sup>-1</sup>) and shochu lee (>320 × 10<sup>4</sup> MPN g<sup>-1</sup>) included higher numbers of chlortetracycline resistant Pseudomonas sp., (25 mg·L<sup>-1</sup><sup></sup>), and row cattle feces included higher numbers of chlortetracycline resistant Enterobacteriacea (15.7 × 10<sup>4</sup> MPN g<sup>-1</sup>), which mostly consisted from Pantoea sp. or Xenorhobdus doucetiae. Numbers of multi drug resistant bacteria, resistant to 25 mg·L<sup>-1 </sup>of<sup> </sup>ciprofloxacin, streptomycin, chloramphenicol, and ampicillin, were the highest in row cattle feces (>143.6 × 10<sup>4</sup> MPN g<sup>-1</sup>), followed by cattle feces manure (4.19 × 10<sup>4</sup> MPN g<sup>-1</sup>), and shochu lee (0.36 × 10<sup>4</sup> MPN g<sup>-1</sup>), which included diverse kinds of bacterial group. The present results indicated that higher numbers of multi drug resistant bacteria were typically found in row cattle feces, and the method was found suitable to enumerate and identify them. These results suggested that the method might become their environmental risk evaluation method.展开更多
BACKGROUND Antibiotic resistance has become a global threat for human health,calling for rational use of antibiotics.AIM To analyze the distribution and drug resistance of the bacteria,providing the prerequisite for u...BACKGROUND Antibiotic resistance has become a global threat for human health,calling for rational use of antibiotics.AIM To analyze the distribution and drug resistance of the bacteria,providing the prerequisite for use of antibiotics in emergency patients.METHODS A total of 2048 emergency patients from 2013 to 2017 were enrolled.Their clinical examination specimens were collected,followed by isolation of bacteria.The bacterial identification and drug susceptibility testing were carried out.RESULTS A total of 3387 pathogens were isolated.The top six pathogens were Acinetobacter baumannii(660 strains),Staphylococcus aureus(436 strains),Klebsiella pneumoniae(347 strains),Pseudomonas aeruginosa(338 strains),Escherichia coli(237 strains),and Candida albicans(207 strains).The isolation rates of these pathogens decreased year by year except Klebsiella pneumoniae,which increased from 7.1%to 12.1%.Acinetobacter baumannii is a widely-resistant strain,with multiple resistances to imipenem,ciprofloxacin,minocycline and tigecycline.The Staphylococcus aureus had high resistance rates to levofloxacin,penicillin G,and tetracycline.But the susceptibility of it to vancomycin and tigecycline were 100%.Klebsiella pneumoniae had high resistance rates to imipenem,cefoperazone/sulbactam,amikacin,and ciprofloxacin,with the lowest resistance rate to tigecycline.The resistance rates of Pseudomonas aeruginosa to cefoperazone/sulbactam and imipenem were higher,with the resistance rate to amikacin below 10%.Besides,Escherichia coli had high resistance rates to ciprofloxacin and cefoperazone/sulbactam and low resistance rates to imipenem,amikacin,and tigecycline.CONCLUSION The pathogenic bacteria isolated from the emergency patients were mainly Acinetobacter baumannii,Staphylococcus aureus,Klebsiella pneumoniae,Pseudomonas aeruginosa,Escherichia coli,and Candida albicans.The detection rates of drugresistant bacteria were high,with different bacteria having multiple drug resistances to commonly used antimicrobial agents,guiding the rational use of drugs and reducing the production of multidrug-resistant bacteria.展开更多
Objective: To understand distribution and drug resistance of pathogenic bacteria from a specialized cancer hospital in 2013 in order to provide a basis for rational clinical antimicrobial agents. Methods: Pathogenic...Objective: To understand distribution and drug resistance of pathogenic bacteria from a specialized cancer hospital in 2013 in order to provide a basis for rational clinical antimicrobial agents. Methods: Pathogenic bacteria identification and drug sensitivity tests were performed with a VITEK 2 compact automatic identification system and data were analyzed using WHONET5.6 software.Results: Of the 1,378 strains tested, 980 were Gram-negative bacilli, accounting for 71.1%, in which Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa were the dominant strains. We found 328 Gram-positive coccus, accounting for 23.8%, in which the amount of Staphylococcus aureus was the highest. We identified 46 fungi, accounting for 4.1%. According to the departmental distribution within the hospital, the surgical departments isolated the major strains, accounting for 49.7%. According to disease types, lung cancer, intestinal cancer and esophagus cancer were the top three, accounting for 20.9%, 17.3% and 14.2%, respectively. No strains were resistant to imipenem, ertapenem or vancomycin.Conclusions: Pathogenic bacteria isolated from the specialized cancer hospital have different resistance rates compared to commonly used antimicrobial agents; therefore antimicrobial agents to reduce the morbidity and mortality of infections should be used.展开更多
Objective:To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis,against clinical isolates of methicillin-resistantStaphylococcus aureus (S.aureus)(MRSA)and multi-drug r...Objective:To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis,against clinical isolates of methicillin-resistantStaphylococcus aureus (S.aureus)(MRSA)and multi-drug resistant Pseudomonas aeruginosa(MDR-P.aeruginosa).Methods:Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration(MIC)was determined by the twofold serial broth dilutions method.The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S.aureus and P.aeruginosa,obtained from Laboratory of Clinical Microbiology,Faculty of Medicine,University of Indonesia.Results:The results showed that the inhibition zone diameter of green tea extracts forS.aureus ATCC 25923 and MRSA were(18.970依0.287)mm,and(19.130依0.250)mm respectively.While the inhibition zone diameter forP.aeruginosa ATCC 27853 and MDR-P.aeruginosawere(17.550依0.393)mm and(17.670依0.398)mm respectively.The MIC of green tea extracts againstS.aureus ATCC 25923 and MRSA were 400μg/mL and 400μg/mL,respectively,whereas the MIC for P.aeruginosa ATCC 27853 and MDR-P.aeruginosawere 800μg/mL,and 800μg/mL,respectively.Conclusions:Camellia sinensisleaves extract could be useful in combating emerging drug-resistance caused by MRSA andP.aeruginosa.展开更多
Drug resistance is becoming a great problem in developing countries due to excessive use and misuse of antibiotics. The emergence of new pathogenic strains with resistance developed against most of the antibiotics whi...Drug resistance is becoming a great problem in developing countries due to excessive use and misuse of antibiotics. The emergence of new pathogenic strains with resistance developed against most of the antibiotics which may cause,difficult to treat infection.To understand the current scenario in different mode of infection is most important for the clinicians and medical practitioners.This article summarized some common infections and antibiotic resistance pattern found among these pathogens.展开更多
Aim/Objective: Increase in incidences of pneumonia due to multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA) in both community and health care settings is of great concern globally. Present study ...Aim/Objective: Increase in incidences of pneumonia due to multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA) in both community and health care settings is of great concern globally. Present study aims to retrospectively analyze the efficacy of new fixed dose combination with antibiotic adjuvant entity (FDC) in comparison with vancomycin to treat patients with multi-drug resistant MRSA pneumonia. Materials and Methods: During this retrospective study, case sheets of patients who were treated for MRSA pneumonia with vancomycin or fixed dose combination of vancomycin + ceftriaxone + adjuvant (FDC) between 20 March 2010 to 20 October 2014 at tertiary care center, were analyzed. Various demographic features, antibiotic therapy, length of treatment duration and the resulting efficacy were evaluated. Microbiological success was measured in terms of bacterial eradication, while clinical success was monitored in terms of complete omission of systemic signs and symptoms. Results: Among 136 patients analyzed, 113 cases were having positive culture for MRSA, and hence were further analyzed. Out of these 113 patients, empirical treatment with vancomycin was given in 59 patients and 54 patients were treated with FDC empirically. After initial culture reports, 22 patients showing resistance to vancomycin were shifted to FDC. Amidst all the patients, 24 (64.86%) of 37 from vancomycin group and 62 (81.57%) of 76 from FDC group achieved clinical success. 9 patients out of these failure cases were cured with FDC + colistin combination therapy. Failure rates in FDC treated patients were significantly low (6.57%) as compared to vancomycin group (13.51%). Conclusion: For the treatment of different types of multi-drug resistant MRSA pneumonia, the empirical intravenous FDC therapy was safe and well tolerated with higher efficacy than vancomycin. Most of the vancomycin failure cases responded to FDC therapy and were cured. This retrospective study also concludes that an alternative option of FDC + colistin is safe and effective to treat the patients which fail to respond to FDC monotherapy.展开更多
<span style="font-family:;" "=""><span style="font-family:Verdana;">Antimicrobial resistance refers to the ability of microorganisms to grow in the presence of an antimic...<span style="font-family:;" "=""><span style="font-family:Verdana;">Antimicrobial resistance refers to the ability of microorganisms to grow in the presence of an antimicrobial agent at a concentration that will normally kill or inhibit their growth. Antimicrobial resistance has become a major global threat making treatment of infections tougher especially with high cost of treatment in humans and animals. This study was done to determine the Multiple Antibiotic Resistant Index (MARI) of Gram-negative bacteria from bird droppings in two commercial poultries in Enugu. Forty (40) samples were collected from each of the poultries. Isolates were identified by standard microbiological methods. The isolates identified were </span><i><span style="font-family:Verdana;">Escherichia</span></i> <i><span style="font-family:Verdana;">coli</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Klebsiella</span></i> <i><span style="font-family:Verdana;">pneumoniae</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Pseudomonas</span></i> <i><span style="font-family:Verdana;">aeruginosa</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Citrobacter</span></i><span style="font-family:Verdana;"> spp, </span><i><span style="font-family:Verdana;">Proteus</span></i><span style="font-family:Verdana;"> spp. and, </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> spp. Antibiotic susceptibility testing was carried out using disc diffusion technique. The organisms were tested against pefloxacin, augmentin (amoxicillin and clavulanic acid), ceftazidime, streptomycin, ciprofloxacin, gentamycin, cephalothin, neomycin and ofloxacin. The result of the susceptibility test showed that </span><i><span style="font-family:Verdana;">Proteus</span></i><span style="font-family:Verdana;"> spp had the highest resistance and MARI value of 0.5 and</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">1.0 respectively. The other MARI values were </span><i><span style="font-family:Verdana;">Escherichia</span></i> <i><span style="font-family:Verdana;">coli</span></i><span style="font-family:Verdana;"> (0.9), </span><i><span style="font-family:Verdana;">Klebsiella</span></i> <i><span style="font-family:Verdana;">pneumonia</span></i><span style="font-family:Verdana;"> (0.9), </span><i><span style="font-family:Verdana;">Pseudomonas</span></i> <i><span style="font-family:Verdana;">aeruginosa</span></i><span style="font-family:Verdana;"> (0.8), </span><i><span style="font-family:Verdana;">Citrobacter</span></i><span style="font-family:Verdana;"> spp (0.8) and </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> spp (0.7). These results suggest that bacterial organisms from poultry source can contribute significantly to the spread of multi-antibiotic resistant organisms. This could arise from the indiscriminate use of antibiotics in bird feeds in poultries.</span></span>展开更多
Objective:To understand the pathogenic bacteria isolated from patients and their drug resistance changes in general ICU of the Affiliated Hospital of Hebei University,so as to provide reference for appropriate selecti...Objective:To understand the pathogenic bacteria isolated from patients and their drug resistance changes in general ICU of the Affiliated Hospital of Hebei University,so as to provide reference for appropriate selection of antibiotics in clinical practice.Methods:A retrospective investigation was conducted to analyze the bacteriological distribution and drug resistance of nosocomial pathogens isolated from the specimens of hospitalized patients in the comprehensive ICU of the hospital from 2019 to 2021.The US technology BD Phoenix 100 automatic bacterial identification analyzer was used for bacterial identification of the pathogen samples,disk diffusion method was used for drug susceptibility test,and SPSS 22.0 software was used to analyze the trend of drug resistance.Results:A total of 970 strains of nosocomial pathogens were detected in the three years.The main pathogens were Acinetobacter baumannii(133 strains,13.71%),Klebsiella pneumoniae(106 strains,10.93%),Pseudomonas aeruginosa(83 strains,8.56%),Escherichia coli(76 strains,7.84%)and Enterococcus faecium(69 strains,7.11%).The resistance rate of Acinetobacter baumannii to antibiotics was high.Klebsiella pneumoniae,Pseudomonas aeruginosa and Escherichia coli had low resistance rates to carbapenems.The situation of bacterial drug resistance is still serious.Conclusion:The drug resistance of pathogenic bacteria collected from Class III Grade A Hospital’s patients to antibiotics was generally high.Therefore,clinical departments should strengthen the inspection of specimens of infection and drug sensitivity test in order to grasp the resistance mechanisms and drug resistance of pathogenic bacteria changes,and select appropriate antimicrobial agents according to the test results.Besides,the formation of drug-resistant strains also needs to be prevented,and the treatment of patients with severe infection needs to be improved.展开更多
文摘Background: Infections in ICU’s patients are known to often originate from the colonization of wounds by the patient’s endogenous microbiota, and to eventually lead to secondary sepsis. Aim: to compare in vitro the direct and residual effects after different exposure times of 4% chlorhexidine, and of 0.1% and 0.04% polyhexanide (in gel and solution forms), on ATCC-microorganisms, and too, on bacterial strains obtained from ICU patients. Methods: We used wild multi-drug resistant strains recently obtained from the wounds of patients hospitalized at ICU and reference strains from the American Type Culture Collection (ATCC). Chlorhexidine 4% was studied as a reference solution. The direct and residual effects of the 0.1% and 0.04% polyhexanide, in gel and solution forms, were analyzed using cotton germ carriers. To evaluate the direct effect, we exposed the strains to the antiseptic. To assess the residual effect, the germ-carriers were impregnated with antiseptic and were allowed to dry before we contaminated them. We inoculated the germ carriers in a culture medium with an inhibitor of antiseptic effect to count the number of surviving microorganisms. Findings: 0.1% Polyhexanide solution proved a direct and residual efficacy after 24 hours equivalent to 4% chlorhexidine. Is very important to highlight that this great efficacy did not change according to whether they were ATCC or multidrug-resistant strains. Conclusions: 0.1% polyhexanide demonstrated a great direct and residual efficacy (like 4% chlorhexidine), against multi-drug resistant strains isolated from ICU’s patients. Moreover, due to its few cytotoxicity against keratinocytes and fibroblasts can be an optimal antiseptic for burns, wounds or ulcers.
文摘This study aimed to evaluate the antibacterial activity of flavonoids extracted from two Libyan brown algae namely Cystoseira compressa and Padina pavonica using microwave-assisted extraction method against pathogenic bacteria isolated from meat, meat products, milk and dairy products (Staphylococcus aureus subsp. aureus (5 isolates), Bacillus cereus (3 isolates), Bacillus pumilus (1 isolate), Salmonella enterica subsp. enteric (4 isolates) and Enterohaemor-rhagic Escherichia coli O157 (EHEC O157) (4 isolates)). All of these isolates were muti-drug resistant with high MAR index. The results showed that C. compressa extract exhibited better and stronger antibacterial activities against the seventeen tested isolates with inhibition zones diameter ranged from 14 - 22 mm compared to P. pavonica extract which showed positive effect against 9 isolates with low inhibition zone ranged from 11 - 16.5 mm. Flavonoids extracted from C. compressa also displayed the best spectrum of bactericidal effect with a ratio MBC/MIC ≤ 4 obtained on all susceptible tested bacterial strains. Flavonoids and proanthocyanidins significantly contributed to the antibacterial properties. The mode of action of these active extracts is under investigation.
基金Basic Research Program of Shanghai Municipal Science and Technology Commission:A MulticenterRandomized+2 种基金Controlled Clinical Study on Fuzheng Quxie Jing Prescription"Buzhong Yiqi Decoction"in the Treatment of Hospital-acquired Pneumonia caused by Multi-drug Resistant Bacteria(No.18401971600)Three-year Action Plan for the Development of Traditional Chinese Medicine in Shanghai:National TCM Emergency Medical Rescue Base Construction[No.ZY(2021-2023)-0101-01]East China Area and Municipal TCM Specialty Disease Alliance Construction[No.ZY(2021-2023)-0302]。
文摘OBJECTIVE:To evaluate the efficacy and safety of Buzhong Yiqi decoction(补中益气汤,BZYQ)in the treatment of hospital-acquired pneumonia(HAP)with multi-drug-resistant bacteria(MDRB).METHODS:This 28-day study was conducted at 5 clinical centers in Shanghai.The eligible patients were randomly assigned(1∶1)into the intervention group(BZYQ plus conventional Western Medicine therapy)and control group(conventional Western Medicine therapy).The primary outcomes were the clinical response,clinical pulmonary infection score(CPIS),and microbiologic response.The secondary outcomes were the 28-day allcause mortality(ACM),Acute Physiology and Chronic Health EvaluationⅡ(APACHEⅡ)score,ventilator weaning rate,length of mechanical ventilation(MV),length of hospital stay,and changes of infection indicators.RESULTS:Altogether 83 subjects in the intervention group and 85 subjects in the control group were analyzed.The clinical success rate(48.2%)and the pathogen eradication rate(59.0%)of the intervention group were all better than those of the control group(32.9%and 38.9%,respectively)with statistically significant differences(P<0.05).The CPIS score of the intervention group(8.9±1.7)was lower than that of the control group(9.6±2.5)(P<0.05).The length of MV in the intervention group[(13.7±6.4)d]was significantly shorter than that of the control group[(17.2±7.2)d](P<0.05).The 28-day ACM of the intervention group(13.33%)was lower than that of the control group(21.2%)with no statistically significant difference(P>0.05).The differences between two groups in ventilator weaning rate,length of hospital stay,and APACHEⅡscore were not statistically significant(P>0.05).The intervention group displayed decreases in white blood cell count,C-reactive protein,neutrophil percentage,and procalcitonin at day 28 compared with baseline(P<0.05).No serious adverse events occurred in either group during the 28-day follow-up.CONCLUSION:BZYQ may be an effective therapeutic option for the management of HAP with MDRB.
文摘AIM:To investigate the types of bacteria in patients with eye infections in Suzhou and their drug resistance to commonly used antibacterial drugs.METHODS:The clinical data of 155 patients were retrospectively collected in this study,and the pathogenic bacteria species and drug resistance of each pathogenic bacteria were analyzed.RESULTS:Among the 155 patients(age from 12 to 87 years old,with an average age of 57,99 males and 56 females)with eye infections(160 eyes:74 in the left eye,76 in the right eye and 5 in both eyes,all of which were exogenous),71(45.81%)strains were gram-positive bacteria,23(14.84%)strains were gram-negative bacteria and 61(39.35%)strains were fungi.Gram-positive bacteria were highly resistant to penicillin and erythromycin(78.87%and 46.48%respectively),but least resistant to vancomycin at 0.Gram-negative bacteria were highly resistant to cefoxitin and compound sulfamethoxazole(100%and 95.65%respectively),but least resistant to meropenem at 0.Comparison of the resistance of gram-positive and gram-negative bacteria to some drugs revealed statistically significant differences(P<0.05)in the resistance of both to cefoxitin,cotrimoxazole,levofloxacin,cefuroxime,ceftriaxone and ceftazidime,and both had higher rates of resistance to gram-negative bacteria than to gram-positive bacteria.The distribution of bacterial infection strains showed that Staphylococcus epidermidis was the most common strain in the conjunctiva,cornea,aqueous humor or vitreous body and other eye parts.Besides,Fusarium and Pseudomonas aeruginosa were also among the most common strains of conjunctival and corneal infections.CONCLUSION:Gram-positive bacteria are the dominant bacteria in eye infections,followed by gram-negative bacteria and fungi.Considering the resistance of gramnegative bacteria to multiple drugs,monitoring of bacteria should be strengthened in eye bacterial infections for effective prevention and control to reduce complications caused by eye infections.
文摘Antibiotic resistance poses a significant global health threat, necessitating a thorough understanding of its prevalence in various ecological contexts. Medicinal plants, renowned for their therapeutic properties, host endophytic bacteria that produce bioactive compounds. Understanding antibiotic resistance dynamics in these bacteria is vital for human health and antibiotic efficacy preservation. In this study, we investigated antibiotic resistance profiles in endophytic bacteria from five medicinal plants: Thankuni, Neem, Aparajita, Joba, and Snake plant. We isolated and characterized 113 endophytic bacteria, with varying resistance patterns observed against multiple antibiotics. Notably, 53 strains were multidrug-resistant (MDR), with 14 exhibiting extensive drug resistance (XDR). Thankuni-associated bacteria displayed 44% MDR and 11% XDR, while Neem-associated bacteria showed higher resistance (60% MDR, 13% XDR). Aparajita-associated bacteria had lower resistance (22% MDR, 6% XDR), whereas Joba-associated bacteria exhibited substantial resistance (54% MDR, 14% XDR). Snake plant-associated bacteria showed 7% MDR and 4% XDR. Genus-specific distribution revealed Bacillus (47%), Staphylococcus (21%), and Klebsiella (11%) as major contributors to MDR. Our findings highlight diverse drug resistance patterns among plant-associated bacteria and underscore the complexity of antibiotic resistance dynamics in diverse plant environments. Identification of XDR strains emphasizes the severity of the antibiotic resistance problem, warranting further investigation into contributing factors.
文摘Objective:The acceptability of herbal remedies for alleviating discomforts and ill-health has become very popular, on the account of the increasing cost of allopathic medicine for personal health maintenance.The observable non-adherence of herbalists to the established World Health Organization(WHO) / National Agency for Food and Drug Administration Control(NAFDAC) regulations for the quality control of herbal medicines is an issue for concern.In view of this,34 popular and widely consumed crude herbal remedies in southwestern,Nigeria were screened for compliance with standard limits for bacterial contamination,bacteria flora and their antibiotic susceptibility pattern.Methods:Isolates recovered from samples were identified using the cultural, morphological and biochemical characteristics.They were also tested for drug sensitivity using standard procedures. Results:A heavy bacteria load ranging from 3.00×10~3-9.58×10~5 CFU/ML and 1.20×10~5- 5.41×10~5 CFU/ML was observed for water and spirit extracted preparations respectively.The bacteria flora cum contaminants were:Staphylococcus aureus,Bacillus cereus,Bacillus subtilis,Pseudomonas aeruginosa, Micrococcus luteus,Lactobacillus plantarum,Klebsiella pneumoniae,Escherichia coli,streptococcus,Shigella, Neisseria,Arthrobacter,Kurthia and Clostridium species.All the isolates were multi-drug resistant(MDR) strains.Conclusion:The crude herbal preparations consumed in Nigeria failed to comply with the internationally recognized standards regarding bacteria load and flora.The presence of MDR pathogens is of greatest concern. It poses a great risk to consumers health and could be a source of introducing MDR organisms into the human population.There is the need for the enforcement of established guidelines to ensure the safety of these preparations.
文摘In the present manuscript it was presented whether spreading of antibiotic resistant bacterial groups in environment could be monitored by our newly developed method by enumerating antibiotic resistant bacterial groups in various biological wastes and composts. Although the numbers were not so high, diverse kinds of colistin resistant bacteria (25 mg·L<sup>-1</sup><sup></sup>) were included in row cattle feces (1.78 × 10<sup>4</sup> MPN g<sup>-1</sup>) and cattle feces manure (>3.84 × 10<sup>4</sup> MPN g<sup>-1</sup>). Compost originated from leftover food (>44.8 × 10<sup>4</sup> MPN g<sup>-1</sup>) and shochu lee (>320 × 10<sup>4</sup> MPN g<sup>-1</sup>) included higher numbers of chlortetracycline resistant Pseudomonas sp., (25 mg·L<sup>-1</sup><sup></sup>), and row cattle feces included higher numbers of chlortetracycline resistant Enterobacteriacea (15.7 × 10<sup>4</sup> MPN g<sup>-1</sup>), which mostly consisted from Pantoea sp. or Xenorhobdus doucetiae. Numbers of multi drug resistant bacteria, resistant to 25 mg·L<sup>-1 </sup>of<sup> </sup>ciprofloxacin, streptomycin, chloramphenicol, and ampicillin, were the highest in row cattle feces (>143.6 × 10<sup>4</sup> MPN g<sup>-1</sup>), followed by cattle feces manure (4.19 × 10<sup>4</sup> MPN g<sup>-1</sup>), and shochu lee (0.36 × 10<sup>4</sup> MPN g<sup>-1</sup>), which included diverse kinds of bacterial group. The present results indicated that higher numbers of multi drug resistant bacteria were typically found in row cattle feces, and the method was found suitable to enumerate and identify them. These results suggested that the method might become their environmental risk evaluation method.
文摘BACKGROUND Antibiotic resistance has become a global threat for human health,calling for rational use of antibiotics.AIM To analyze the distribution and drug resistance of the bacteria,providing the prerequisite for use of antibiotics in emergency patients.METHODS A total of 2048 emergency patients from 2013 to 2017 were enrolled.Their clinical examination specimens were collected,followed by isolation of bacteria.The bacterial identification and drug susceptibility testing were carried out.RESULTS A total of 3387 pathogens were isolated.The top six pathogens were Acinetobacter baumannii(660 strains),Staphylococcus aureus(436 strains),Klebsiella pneumoniae(347 strains),Pseudomonas aeruginosa(338 strains),Escherichia coli(237 strains),and Candida albicans(207 strains).The isolation rates of these pathogens decreased year by year except Klebsiella pneumoniae,which increased from 7.1%to 12.1%.Acinetobacter baumannii is a widely-resistant strain,with multiple resistances to imipenem,ciprofloxacin,minocycline and tigecycline.The Staphylococcus aureus had high resistance rates to levofloxacin,penicillin G,and tetracycline.But the susceptibility of it to vancomycin and tigecycline were 100%.Klebsiella pneumoniae had high resistance rates to imipenem,cefoperazone/sulbactam,amikacin,and ciprofloxacin,with the lowest resistance rate to tigecycline.The resistance rates of Pseudomonas aeruginosa to cefoperazone/sulbactam and imipenem were higher,with the resistance rate to amikacin below 10%.Besides,Escherichia coli had high resistance rates to ciprofloxacin and cefoperazone/sulbactam and low resistance rates to imipenem,amikacin,and tigecycline.CONCLUSION The pathogenic bacteria isolated from the emergency patients were mainly Acinetobacter baumannii,Staphylococcus aureus,Klebsiella pneumoniae,Pseudomonas aeruginosa,Escherichia coli,and Candida albicans.The detection rates of drugresistant bacteria were high,with different bacteria having multiple drug resistances to commonly used antimicrobial agents,guiding the rational use of drugs and reducing the production of multidrug-resistant bacteria.
文摘Objective: To understand distribution and drug resistance of pathogenic bacteria from a specialized cancer hospital in 2013 in order to provide a basis for rational clinical antimicrobial agents. Methods: Pathogenic bacteria identification and drug sensitivity tests were performed with a VITEK 2 compact automatic identification system and data were analyzed using WHONET5.6 software.Results: Of the 1,378 strains tested, 980 were Gram-negative bacilli, accounting for 71.1%, in which Klebsiella pneumonia, Escherichia coli and Pseudomonas aeruginosa were the dominant strains. We found 328 Gram-positive coccus, accounting for 23.8%, in which the amount of Staphylococcus aureus was the highest. We identified 46 fungi, accounting for 4.1%. According to the departmental distribution within the hospital, the surgical departments isolated the major strains, accounting for 49.7%. According to disease types, lung cancer, intestinal cancer and esophagus cancer were the top three, accounting for 20.9%, 17.3% and 14.2%, respectively. No strains were resistant to imipenem, ertapenem or vancomycin.Conclusions: Pathogenic bacteria isolated from the specialized cancer hospital have different resistance rates compared to commonly used antimicrobial agents; therefore antimicrobial agents to reduce the morbidity and mortality of infections should be used.
基金Supported by Collaborative Project Research,Faculty of Pharmacy and Department of Microbiology,Medical Faculty,University of Indonesia,Grant No.2012/0806327660
文摘Objective:To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis,against clinical isolates of methicillin-resistantStaphylococcus aureus (S.aureus)(MRSA)and multi-drug resistant Pseudomonas aeruginosa(MDR-P.aeruginosa).Methods:Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration(MIC)was determined by the twofold serial broth dilutions method.The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S.aureus and P.aeruginosa,obtained from Laboratory of Clinical Microbiology,Faculty of Medicine,University of Indonesia.Results:The results showed that the inhibition zone diameter of green tea extracts forS.aureus ATCC 25923 and MRSA were(18.970依0.287)mm,and(19.130依0.250)mm respectively.While the inhibition zone diameter forP.aeruginosa ATCC 27853 and MDR-P.aeruginosawere(17.550依0.393)mm and(17.670依0.398)mm respectively.The MIC of green tea extracts againstS.aureus ATCC 25923 and MRSA were 400μg/mL and 400μg/mL,respectively,whereas the MIC for P.aeruginosa ATCC 27853 and MDR-P.aeruginosawere 800μg/mL,and 800μg/mL,respectively.Conclusions:Camellia sinensisleaves extract could be useful in combating emerging drug-resistance caused by MRSA andP.aeruginosa.
文摘Drug resistance is becoming a great problem in developing countries due to excessive use and misuse of antibiotics. The emergence of new pathogenic strains with resistance developed against most of the antibiotics which may cause,difficult to treat infection.To understand the current scenario in different mode of infection is most important for the clinicians and medical practitioners.This article summarized some common infections and antibiotic resistance pattern found among these pathogens.
文摘Aim/Objective: Increase in incidences of pneumonia due to multi-drug resistant methicillin resistant Staphylococcus aureus (MRSA) in both community and health care settings is of great concern globally. Present study aims to retrospectively analyze the efficacy of new fixed dose combination with antibiotic adjuvant entity (FDC) in comparison with vancomycin to treat patients with multi-drug resistant MRSA pneumonia. Materials and Methods: During this retrospective study, case sheets of patients who were treated for MRSA pneumonia with vancomycin or fixed dose combination of vancomycin + ceftriaxone + adjuvant (FDC) between 20 March 2010 to 20 October 2014 at tertiary care center, were analyzed. Various demographic features, antibiotic therapy, length of treatment duration and the resulting efficacy were evaluated. Microbiological success was measured in terms of bacterial eradication, while clinical success was monitored in terms of complete omission of systemic signs and symptoms. Results: Among 136 patients analyzed, 113 cases were having positive culture for MRSA, and hence were further analyzed. Out of these 113 patients, empirical treatment with vancomycin was given in 59 patients and 54 patients were treated with FDC empirically. After initial culture reports, 22 patients showing resistance to vancomycin were shifted to FDC. Amidst all the patients, 24 (64.86%) of 37 from vancomycin group and 62 (81.57%) of 76 from FDC group achieved clinical success. 9 patients out of these failure cases were cured with FDC + colistin combination therapy. Failure rates in FDC treated patients were significantly low (6.57%) as compared to vancomycin group (13.51%). Conclusion: For the treatment of different types of multi-drug resistant MRSA pneumonia, the empirical intravenous FDC therapy was safe and well tolerated with higher efficacy than vancomycin. Most of the vancomycin failure cases responded to FDC therapy and were cured. This retrospective study also concludes that an alternative option of FDC + colistin is safe and effective to treat the patients which fail to respond to FDC monotherapy.
文摘<span style="font-family:;" "=""><span style="font-family:Verdana;">Antimicrobial resistance refers to the ability of microorganisms to grow in the presence of an antimicrobial agent at a concentration that will normally kill or inhibit their growth. Antimicrobial resistance has become a major global threat making treatment of infections tougher especially with high cost of treatment in humans and animals. This study was done to determine the Multiple Antibiotic Resistant Index (MARI) of Gram-negative bacteria from bird droppings in two commercial poultries in Enugu. Forty (40) samples were collected from each of the poultries. Isolates were identified by standard microbiological methods. The isolates identified were </span><i><span style="font-family:Verdana;">Escherichia</span></i> <i><span style="font-family:Verdana;">coli</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Klebsiella</span></i> <i><span style="font-family:Verdana;">pneumoniae</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Pseudomonas</span></i> <i><span style="font-family:Verdana;">aeruginosa</span></i><span style="font-family:Verdana;">, </span><i><span style="font-family:Verdana;">Citrobacter</span></i><span style="font-family:Verdana;"> spp, </span><i><span style="font-family:Verdana;">Proteus</span></i><span style="font-family:Verdana;"> spp. and, </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> spp. Antibiotic susceptibility testing was carried out using disc diffusion technique. The organisms were tested against pefloxacin, augmentin (amoxicillin and clavulanic acid), ceftazidime, streptomycin, ciprofloxacin, gentamycin, cephalothin, neomycin and ofloxacin. The result of the susceptibility test showed that </span><i><span style="font-family:Verdana;">Proteus</span></i><span style="font-family:Verdana;"> spp had the highest resistance and MARI value of 0.5 and</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">1.0 respectively. The other MARI values were </span><i><span style="font-family:Verdana;">Escherichia</span></i> <i><span style="font-family:Verdana;">coli</span></i><span style="font-family:Verdana;"> (0.9), </span><i><span style="font-family:Verdana;">Klebsiella</span></i> <i><span style="font-family:Verdana;">pneumonia</span></i><span style="font-family:Verdana;"> (0.9), </span><i><span style="font-family:Verdana;">Pseudomonas</span></i> <i><span style="font-family:Verdana;">aeruginosa</span></i><span style="font-family:Verdana;"> (0.8), </span><i><span style="font-family:Verdana;">Citrobacter</span></i><span style="font-family:Verdana;"> spp (0.8) and </span><i><span style="font-family:Verdana;">Enterobacter</span></i><span style="font-family:Verdana;"> spp (0.7). These results suggest that bacterial organisms from poultry source can contribute significantly to the spread of multi-antibiotic resistant organisms. This could arise from the indiscriminate use of antibiotics in bird feeds in poultries.</span></span>
基金In-Hospital Fund Project of Affiliated Hospital of Hebei University:Analysis of Nosocomial Infection in Intensive Care Unit(2019Q030)。
文摘Objective:To understand the pathogenic bacteria isolated from patients and their drug resistance changes in general ICU of the Affiliated Hospital of Hebei University,so as to provide reference for appropriate selection of antibiotics in clinical practice.Methods:A retrospective investigation was conducted to analyze the bacteriological distribution and drug resistance of nosocomial pathogens isolated from the specimens of hospitalized patients in the comprehensive ICU of the hospital from 2019 to 2021.The US technology BD Phoenix 100 automatic bacterial identification analyzer was used for bacterial identification of the pathogen samples,disk diffusion method was used for drug susceptibility test,and SPSS 22.0 software was used to analyze the trend of drug resistance.Results:A total of 970 strains of nosocomial pathogens were detected in the three years.The main pathogens were Acinetobacter baumannii(133 strains,13.71%),Klebsiella pneumoniae(106 strains,10.93%),Pseudomonas aeruginosa(83 strains,8.56%),Escherichia coli(76 strains,7.84%)and Enterococcus faecium(69 strains,7.11%).The resistance rate of Acinetobacter baumannii to antibiotics was high.Klebsiella pneumoniae,Pseudomonas aeruginosa and Escherichia coli had low resistance rates to carbapenems.The situation of bacterial drug resistance is still serious.Conclusion:The drug resistance of pathogenic bacteria collected from Class III Grade A Hospital’s patients to antibiotics was generally high.Therefore,clinical departments should strengthen the inspection of specimens of infection and drug sensitivity test in order to grasp the resistance mechanisms and drug resistance of pathogenic bacteria changes,and select appropriate antimicrobial agents according to the test results.Besides,the formation of drug-resistant strains also needs to be prevented,and the treatment of patients with severe infection needs to be improved.