Low temperature is one of the main environmental stress factors influenc- ing plant growth and development and crop yield. Cold tolerance genes and progress of their application in genetic engineering of plant for col...Low temperature is one of the main environmental stress factors influenc- ing plant growth and development and crop yield. Cold tolerance genes and progress of their application in genetic engineering of plant for cold tolerance were reviewed comprehensively and systematically from the aspect of genes that are in- volved in biosynthesis of osmotic substances, genes coding fatty acid desaturation enzymes, antifreeze protein genes, genes coding antioxidant enzymes and so on, aiming at laying the foundation for genetic improvement of cold tolerance and breeding of plants.展开更多
Twenty-six half-sib groups (53 full-sib families) of turbot,Scophthalmus maximus Linnaeus, were obtained by artificial insemination. We measured growth in the offspring (40-50 individuals/family) and subjected the...Twenty-six half-sib groups (53 full-sib families) of turbot,Scophthalmus maximus Linnaeus, were obtained by artificial insemination. We measured growth in the offspring (40-50 individuals/family) and subjected them to a thermal tolerance challenge over a period of 34 d. There was no significant difference in daily mor-tality (range: 0.580%-1.391%) between Days 1-13 during the thermal tolerance challenge. However, daily cumulative mortality increased rapidly between Days 14 and 29, especially on Days 15 and 16 (20.232% and 34.377%, respectively). Mortality was highest on Day 16 (14.145%). We estimated the genetic parameters using the average information restricted maximum likelihood method. We used a likelihood ratio test to evaluate the significance of effects in models with and without identity as an effect, and compared the final log-likelihoods (maximum log L). Lastly, we estimated phenotypic and genetic correlation between the up-per thermal tolerance limit (UTT) and body weight (BW). In this study, the positive phenotypic correlation was low between UTT and BW (0.093±0.029). The genetic correlation between UTT and BW was negative (-0.044±0.239). The heritability for upper thermal tolerance was low (0.087±0.032), which is of approximate-ly moderate heritability. The heritability for body weight was high (0.303±0.074). Our results suggest there is significant potential for improvement in the culture of turbot by selective breeding.展开更多
The inability of Fenneropenaeus chinensis to tolerate low temperatures is of major economic concern in temperate climates,as it reduces their growing season and leads to over-winter mortality.In this study,the heritab...The inability of Fenneropenaeus chinensis to tolerate low temperatures is of major economic concern in temperate climates,as it reduces their growing season and leads to over-winter mortality.In this study,the heritability of body weight under low grow-out temperature and cold tolerance in F.chinensis were first investigated and estimated using 88 ful-sib families,which might provide crucial information in Chinese fleshy prawn breeding programs.The heritability for body weight under suitable and low temperature of F.chinensis were both moderate(0.158 0±0.307 5 and 0.132 0±0.026 9 respectively);the large coefficient of variation(approximately 21%) and moderate estimate of heritability for body weight indicated substantial potential for selective breeding.The heritability estimate for cold tolerance was low(0.019 2±0.023 5),and showed no significant differences from zero(P〉0.05).A weak genetic correlation between cold tolerance and body weight was also estimated in the present study,also showing no significant differences from zero(P〉0.05).Thus,more research needs to be conducted on the more accurate heritability estimate of cold tolerance and genetic correlations between traits in F.chinensis to further improve the achievement of breeding goals.展开更多
The somatic hybrid KT1 was previously obtained from protoplast fusion between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its wild relative I. triloba L. However, its genetic and epigenetic variat...The somatic hybrid KT1 was previously obtained from protoplast fusion between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its wild relative I. triloba L. However, its genetic and epigenetic variations have not been investigated. This study showed that KT1 exhibited significantly higher drought tolerance compared to the cultivated parent Kokei No. 14. The content of proline and activities of superoxide dismutase (SOD) and photosynthesis were significantly increased, while malonaldehyde (MDA) content was significantly decreased compared to Kokei No. 14 under drought stress. KT1 also showed higher expression level of well-known drought stress-responsive genes compared to Kokei No. 14 under drought stress. Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) analyses indicated that KT1 had AFLP and MSAP band patterns consisting of both parent specific bands and changed bands. Fur- ther analysis demonstrated that in KT1. the proportions of Kokei No. 14 specific genome components and methylation sites were much greater than those of I. triloba. KT1 had the same chloroplast and mitochondrial genomes as Kokei No. 14. These results will aid in developing the useful genes ofI. triloba and understanding the evolution and phylogeny of the cultivated sweetpotato.展开更多
The present study evaluated submergence responses in 88 lowland indigenous rice(Oryza sativa L.) landraces from Koraput, India, to identify submergence-tolerant rice genotypes. In pot experiments, variations in surviv...The present study evaluated submergence responses in 88 lowland indigenous rice(Oryza sativa L.) landraces from Koraput, India, to identify submergence-tolerant rice genotypes. In pot experiments, variations in survival rate, shoot elongation, relative growth index, dry matter, chlorophyll, soluble sugar and starch contents were evaluated in two consecutive years under well-drained and completely submerged conditions. Principal component analysis showed that the first three axes contributed 96.820% of the total variation among the landraces, indicating wide variation between genotypes. Major traits such as survival rate, relative growth index, soluble sugar and starch contents appeared to be important determinants of phenotypic diversity among the landraces. Phenotypic coefficient of variance was higher than genotypic coefficient of variance for all the traits and all showed high heritability(90.38%–99.54%). Five rice landraces(Samudrabali, Basnamundi, Gadaba, Surudaka and Dokarakuji) were the most tolerant to submergence. When submerged for up to 14d, Samudrabali, Basnamundi and Godoba were notable for having greater survival rates than a standard submergence tolerant variety FR13 A, and also notable for elongating more vigorously and accumulating more biomass. These three landraces may therefore be especially useful in lowland rice growing areas that are affected by both moderate stagnant water and flash flooding. Molecular genotyping revealed that the submergence tolerance of Samudrabali, Basnamundi and Godoba is linked to the presence of one or more different Sub1 loci and it may well prove useful for breeding improved submergence tolerant rice varieties, thereby assising to improve yield stability in the rainfed lowland agro-ecosystem.展开更多
Peanut (Arachis hypogaea L.) is one of the most important oilseed crops that are cultivated worldwide. Peanut production is now greatly limited by drought stress, which is a major environmental challenge. The urgent t...Peanut (Arachis hypogaea L.) is one of the most important oilseed crops that are cultivated worldwide. Peanut production is now greatly limited by drought stress, which is a major environmental challenge. The urgent task for current peanut research is thus to study the underlying mechanisms of peanut drought tolerance, to identify genes that are closely associated with drought tolerance, and to create new germplasms/varieties with high drought tolerance. In this review, we summarize recent advances in the acclimation mechanisms to water deficiency and the genetic improvement of peanut for drought tolerance, and propose the perspectives for the future peanut research.展开更多
This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic ...This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.展开更多
Country bean, Lablab purpureus (L.) is considered one of the most important leguminous crops, but their cultivation under drought stress condition encounters challenges. In this study, an experiment has been conducted...Country bean, Lablab purpureus (L.) is considered one of the most important leguminous crops, but their cultivation under drought stress condition encounters challenges. In this study, an experiment has been conducted among 30 genotypes under drought condition to explore morphological diversity of qualitative and quantitative, biochemical, molecular analysis. The study identified significant variations in eight traits among the genotypes examined, with phenotypic variance exceeding genotypic variance, indicating both genetic and environmental influences. High heritability and genetic advance were observed in primary, secondary, and tertiary branch lengths, suggesting these traits are likely controlled by additive gene effects, making them effective targets for selection. Principal component analysis identified three components that made a substantial contribution, accounting for approximately 73.06% of the overall quantitative variations. Among the quantitative traits, the highest coefficient of variation (CV%) has been found in number of flowers (55.05%). While number of primary branches, primary branch length, number of secondary branches, secondary branch length, number of tertiary branches, tertiary branch length has individually more than 20% of CV%. The genotypes have been grouped into three clusters based on quantitative traits. Analysis of protein reveals that the genotypes of DS28 and DS29 have higher protein content than other genotypes. Dehydrogenase responsive genotypes have been found on DS28 and DS29 from the molecular analysis. The results suggest that the genotypes DS28 and DS29 could contribute as genetic resource of high protein content and DREB responsive, and the eight quantitative traits of 30 genotypes could be used for further breeding programme.展开更多
An abnormally high temperature produces a stress response in turbot causing large economic losses in the turbot aquaculture industry of China. A genetic improvement of the upper thermal tolerance (UTT) of turbot could...An abnormally high temperature produces a stress response in turbot causing large economic losses in the turbot aquaculture industry of China. A genetic improvement of the upper thermal tolerance (UTT) of turbot could allow cultured fi sh to adapt. A genetic evaluation of UTT is required for determining the practicability of including this trait into a breeding program. In this study, data were recorded from a temperature tolerance test conducted on 3 200 individual turbots from 32 full-sib groups. A cross-sectional linear model and a cross-sectional threshold probit model were used to analyze the test-period survival and a cross-sectional threshold logit model was used to analyze the test-day survival. In addition, phenotypic and genetic correlations between body weight and survival data were estimated. The estimated heritability values obtained from the cross-sectional linear model (CSL), the cross-sectional threshold (probit) model (THRp), and the cross-sectional threshold (logit) model (THRl) were 0.247 9±0.108 3, 0.288 3±0.161 2, and 0.106 9±0.045 2, respectively. The correlation coeffi cients among the full-sib family estimated breeding values (EBVs) obtained from the three models were greater than 0.998 6 and all models produced an almost identical family ranking. The accuracies of selection obtained with the CSL, THRp, and THRl model were 0.773 8, 0.775 4, and 0.784 4, respectively, the greatest from the THRl model. The genetic correlations between body weight and survival data EBVs from the CSL, THRp, and THRl models were 0.020 1,-6.201 1×10^-4 , and -3.115 4×10^-4 , respectively, and the phenotypic correlations between the two traits were -0.837 1 and -0.667 1, respectively. The findings of this study provide background information to determine the best strategy of selection for the genetic improvement of UTT in turbot.展开更多
Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated. A moderately salt-sensitive Lycopersicon esculentum Mill.‘XF 98-7’ was hybridized with a salt-...Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated. A moderately salt-sensitive Lycopersicon esculentum Mill.‘XF 98-7’ was hybridized with a salt-tolerant Lycopersicon pimpinellifolium accession LA2184, and F2 and F3 populations were developed. The F2 population was used for SSR mapping and the F3 families were evaluated for salt tolerance in solution cultures containing 1% NaCl. A LOD score threshold of 2.0 was chosen to identify putative QTLs and to estimate their additive effect and phenotypic variation. Two genomic regions (LEtat003-SSR139, SSR119-SSR17) were detected on chromosome 4 beating significant QTLs for salt tolerance, respectively accounted for 6.03% and 8.01% of the phenotypic variation. The QTL in the marker interval of LEtat003-SSR139 showed significant negative effects, while the other QTL in the marker interval of SSR119-SSR17 showed significant positive effects. The identification of genomic locations with both positive and negative effects on this trait suggests the likelihood of recovering transgressive segregants in progeny derived from these parental lines. Results and its application in developing salt-tolerant tomatoes as molecular markers are discussed in this paper.展开更多
Six tropical maize inbred lines were crossed in a half diallel fashion and evaluated along with their F1 hybrids under low N (0 kg/ha) and high N(170 kg/ha), for grain yield, ear diameter, ear length, number of rows p...Six tropical maize inbred lines were crossed in a half diallel fashion and evaluated along with their F1 hybrids under low N (0 kg/ha) and high N(170 kg/ha), for grain yield, ear diameter, ear length, number of rows per ear, 100-kernel weight, ear leaf area, shoot dry weight, ear leaf chlorophyll content and plant height to determine their response to different level of N. Grain yield and ear leaf chlorophyll content measured by 48% lower under -N than under + N, and were most affected by -N. Ear length had the highest reduction under -N of 22%. Plant height and shoot dry weight were both reduced by 28%. Diallel analysis indicated significant additive as well as dominance variance for grain yield under -N. The same results were shown when one tolerant x nontolerant cross from the diallel hybrids was subjected to generation mean analysis which also indicated significant epistatic effects. These results suggest that S1 or S2 progeny selection may be an effective means of improving grain yield of tropical maize under low soil N.展开更多
Pain is a sensation related to potential or actual damage in some tissue of the body. The mainstay of medical pain therapy remains drugs that have been around for decades, like non-steroidal anti-inflammatory drugs (...Pain is a sensation related to potential or actual damage in some tissue of the body. The mainstay of medical pain therapy remains drugs that have been around for decades, like non-steroidal anti-inflammatory drugs (NSAIDs), or opiates. However, adverse effects of opiates, particularly tolerance, limit their clinical use. Several lines of investigations have shown that systemic (intraperitoneal) administration of NSAIDs induces antinociception with some effects of tolerance. In this review, we report that repeated microinjection of NSAIDs analgin, clodifen, ketorolac and xefocam into the central nucleus of amygdala, the midbrain periaqueductal grey matter and nucleus raphe magnus in the following 4 days result in progressively less antinociception compared to the saline control testing in the tail-flick reflex and hot plate latency tests. Hence, tolerance develops to these drugs and cross-tolerance to morphine in male rats. These findings strongly support the suggestion of endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain-control system. Moreover, the periaqueductal grey-rostral ventro-medial part of medulla circuit should be viewed as a pain-modulation system. These data are important for human medicine. In particular, cross-tolerance between non-opioid and opioid analgesics should be important in the clinical setting.展开更多
Salt and low temperature were both very important factors for soybean production. It was necessary to improve the salt stress and low-temperature tolerance of soybean. The main purpose of this paper was to map the qua...Salt and low temperature were both very important factors for soybean production. It was necessary to improve the salt stress and low-temperature tolerance of soybean. The main purpose of this paper was to map the quantitative trait loci(QTL) related with salt tolerance and low- temperature tolerance at germination stage with backcross introgression lines(BILs),and analyze the genetic overlap between them. There were 22 QTL located with BC2 F4 introgression populations after salt stress,and 15 QTL were mapped after low-temperature stress. Seven overlapping QTLs between salt tolerance and low-temperature tolerance were detected on 6 linkage groups at germination stage. In total,there were 31.81 % of salt tolerance and low-temperature tolerance loci existed genetic overlap.展开更多
ICE1, an Arabidopsis thaliana transcription factor gene, was cloned by RT-PCR and successfully transformed into rice variety Kenjiandao 10 by the Agrobacterium-mediated transformation method. PCR amplification and Sou...ICE1, an Arabidopsis thaliana transcription factor gene, was cloned by RT-PCR and successfully transformed into rice variety Kenjiandao 10 by the Agrobacterium-mediated transformation method. PCR amplification and Southern blot analysis indicated that ICE1 had been integrated into rice genome. Compared with the non-transgenic plants, the transgenic plants exhibited high resistance to hygromycin B and were consistent with the Mendelian inheritance of a single copy of the transgenic ICE1. Under the low temperature stress, the transgenic plants showed the lower mortality rate and the increased proline content. These results suggest that the Arabidopsis ICE1 is functional in rice and the over-expression of ICE1 improves the tolerance to cold stress in rice.展开更多
Genetic analysis showed that cold tolerance at booting stage of near-isogenic lines (NILs) of Kunmingxiaobaigu was controlled by a gene with large phenotypic variance. One hundred and sixty-four simple sequence repe...Genetic analysis showed that cold tolerance at booting stage of near-isogenic lines (NILs) of Kunmingxiaobaigu was controlled by a gene with large phenotypic variance. One hundred and sixty-four simple sequence repeats (SSR) distributed over 12 chromosomes were used to screen polymorphism between Towata (recurrent parent, RP) and near-isogenic line pool (NILP), and two SSR markers at the long arm of chromosome 5 showed polymorphism in comparison with RP genome. Of the two markers, RM31 was found possibly linked with the cold tolerance gene at booting stage through one-way ANOVA. Twelve SSR markers around RM31 were then used to detect polymorphism between RP and NIL, and only RM7452 had polymorphism. The gene of cold tolerance at booting stage was further mapped on chromosome 5 between RM7452 and RM31 with genetic distances of 4.8 cM and 8.0 cM, respectively. This gene explained 10.50% of phenotypic variance and 5.10% of phenotypic variance of fully filled grains, and was tentatively designated as Ctb(t).展开更多
Tolerance charting is an effective tool to determine the optimal allocation of working dimensions and working tolerances such that the blueprint dimensions and tolerances can be achieved to accomplish the cost objecti...Tolerance charting is an effective tool to determine the optimal allocation of working dimensions and working tolerances such that the blueprint dimensions and tolerances can be achieved to accomplish the cost objectives.The selection of machining datum and allocation of tolerances are critical in any machining process planning as they directly affect any setup methods/machine tools selection and machining time.This paper mainly focuses on the selection of optimum machining datums and machining tolerances simultaneously in process planning.A dynamic tolerance charting constraint scheme is developed and implemented in the optimization procedure.An optimization model is formulated for selecting machining datum and tolerances and implemented with an algorithm namely Elitist Non-Dominated Sorting Genetic Algorithm(NSGA-II).The computational results indicate that the proposed methodology is capable and robust in finding the optimal machining datum set and tolerances.展开更多
In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidop...In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidopsis thaliana was used to transform mature seeds-derived embryogenic calli of four cultivars. A total of 112 transgenic plants were regenerated from 32 independent lines and verified by histochemical detection of GUS activity, PCR assay and Southern hybridization analysis. The transformation frequency ranged from 0.92 to 2.87% with apparent differences among the cultivars. Stress tolerances of transgenic plants were enhanced, which was shown by the facts that transgenic plants had distinct growth superiority and significantly higher survival rate than non-transformed ones under high salinity and high osmosis stresses, and that relative electronic conductivity of in vitro leaves treated with low and high temoeratures, dehvdration and high salinity stresses was 25-30% lower in transgenic plants than in control plants.In addition,it was observed that growth of transgenic plants was inhibited due to constitutive overexpression of CBF1 gene under normal environmental conditions.展开更多
Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity.Currently,gene therapy drugs such as siRNA,shRNA,antisense oligonucleotide,CRISPR/Cas9 system,plas...Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity.Currently,gene therapy drugs such as siRNA,shRNA,antisense oligonucleotide,CRISPR/Cas9 system,plasmid DNA and miRNA have shown great potential in biomedical applications.To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues,cells and organelles,the development of excellent drug delivery vehicles is of utmost importance.Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression.With the development of nanotechnology,novel nanocarriers are gradually replacing viral vectors,emerging superior performance.This review mainly illuminates the current widely used gene therapy drugs,summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs,and sums up the application of gene therapy to treat genetic diseases.Additionally,the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.展开更多
Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in...Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on critical biochemical process. A novel approach to improve salt tolerance has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harbouring the plasmid pBIGM which carrying the mannitol-1-phosphate dehydrogenase (Mt1D) and glucitol-6-phosphate dehydrogenase (GutD). Organogenic transgenic calli and transgenic regenerated plantlets were produced on selection medium containing 15mg/L kanamycin and confirmed by Southern blot analysis of genomic DNA. Salt tolerance assays demonstrated that the salt tolerance of transgenic calli and regenerated plantlets were increased. These results suggested that an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.展开更多
Traditionally,parameter design is carried out prior to tolerance design. However, this two-step design strategy cannot guarantee optimal robustness for products' quality. The proposed integrated robust design meth...Traditionally,parameter design is carried out prior to tolerance design. However, this two-step design strategy cannot guarantee optimal robustness for products' quality. The proposed integrated robust design method determined the optimal parameter and tolerance simultaneously by calculating the maximum tolerance region,thereby improving the quality of products. In addition,the proposed method did not need uncertainty analysis to obtain the maximum tolerance region,so that the calculation cost could be decreased. And the method avoided the difficulty of gaining costtolerance function as maximum tolerance region represented both demand of cost and robust. Finally,an amplifier circuit case was conducted for verification purpose. Based on the results, the proposed approach could provide robust solution with optimal maximum tolerance region.展开更多
基金Supported by National Natural Science Foundation of China(30871512,31000701)Startup Foundation for Advanced Talents of Henan Academy of Agricultural Sciences(2060503)~~
文摘Low temperature is one of the main environmental stress factors influenc- ing plant growth and development and crop yield. Cold tolerance genes and progress of their application in genetic engineering of plant for cold tolerance were reviewed comprehensively and systematically from the aspect of genes that are in- volved in biosynthesis of osmotic substances, genes coding fatty acid desaturation enzymes, antifreeze protein genes, genes coding antioxidant enzymes and so on, aiming at laying the foundation for genetic improvement of cold tolerance and breeding of plants.
基金The Special Scientific Research Funds for Central Non-profit Institutes,Yellow Sea Fisheries Research Institutes under contract No.20603022012002the National High Technology Research and Development Program of China(863 Program) under contract No.2012AA10A408-7
文摘Twenty-six half-sib groups (53 full-sib families) of turbot,Scophthalmus maximus Linnaeus, were obtained by artificial insemination. We measured growth in the offspring (40-50 individuals/family) and subjected them to a thermal tolerance challenge over a period of 34 d. There was no significant difference in daily mor-tality (range: 0.580%-1.391%) between Days 1-13 during the thermal tolerance challenge. However, daily cumulative mortality increased rapidly between Days 14 and 29, especially on Days 15 and 16 (20.232% and 34.377%, respectively). Mortality was highest on Day 16 (14.145%). We estimated the genetic parameters using the average information restricted maximum likelihood method. We used a likelihood ratio test to evaluate the significance of effects in models with and without identity as an effect, and compared the final log-likelihoods (maximum log L). Lastly, we estimated phenotypic and genetic correlation between the up-per thermal tolerance limit (UTT) and body weight (BW). In this study, the positive phenotypic correlation was low between UTT and BW (0.093±0.029). The genetic correlation between UTT and BW was negative (-0.044±0.239). The heritability for upper thermal tolerance was low (0.087±0.032), which is of approximate-ly moderate heritability. The heritability for body weight was high (0.303±0.074). Our results suggest there is significant potential for improvement in the culture of turbot by selective breeding.
基金Qingdao Postdoctoral Science Foundation Funded Project under contract No.Q51201403the National Natural Science Foundation of China under contract Nos 31172402 and 31572616+2 种基金the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASKJ02Shandong Provincial Natural Science Foundation of China under contract No.ZR2014CQ001the Taishan Scholar Program for Seed Industry
文摘The inability of Fenneropenaeus chinensis to tolerate low temperatures is of major economic concern in temperate climates,as it reduces their growing season and leads to over-winter mortality.In this study,the heritability of body weight under low grow-out temperature and cold tolerance in F.chinensis were first investigated and estimated using 88 ful-sib families,which might provide crucial information in Chinese fleshy prawn breeding programs.The heritability for body weight under suitable and low temperature of F.chinensis were both moderate(0.158 0±0.307 5 and 0.132 0±0.026 9 respectively);the large coefficient of variation(approximately 21%) and moderate estimate of heritability for body weight indicated substantial potential for selective breeding.The heritability estimate for cold tolerance was low(0.019 2±0.023 5),and showed no significant differences from zero(P〉0.05).A weak genetic correlation between cold tolerance and body weight was also estimated in the present study,also showing no significant differences from zero(P〉0.05).Thus,more research needs to be conducted on the more accurate heritability estimate of cold tolerance and genetic correlations between traits in F.chinensis to further improve the achievement of breeding goals.
基金supported by the China Agriculture Research System(CARS-11,Sweetpotato)the National Natural Science Foundation of China(31461143017)
文摘The somatic hybrid KT1 was previously obtained from protoplast fusion between sweetpotato (Ipomoea batatas (L.) Lam.) cv. Kokei No. 14 and its wild relative I. triloba L. However, its genetic and epigenetic variations have not been investigated. This study showed that KT1 exhibited significantly higher drought tolerance compared to the cultivated parent Kokei No. 14. The content of proline and activities of superoxide dismutase (SOD) and photosynthesis were significantly increased, while malonaldehyde (MDA) content was significantly decreased compared to Kokei No. 14 under drought stress. KT1 also showed higher expression level of well-known drought stress-responsive genes compared to Kokei No. 14 under drought stress. Amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) analyses indicated that KT1 had AFLP and MSAP band patterns consisting of both parent specific bands and changed bands. Fur- ther analysis demonstrated that in KT1. the proportions of Kokei No. 14 specific genome components and methylation sites were much greater than those of I. triloba. KT1 had the same chloroplast and mitochondrial genomes as Kokei No. 14. These results will aid in developing the useful genes ofI. triloba and understanding the evolution and phylogeny of the cultivated sweetpotato.
文摘The present study evaluated submergence responses in 88 lowland indigenous rice(Oryza sativa L.) landraces from Koraput, India, to identify submergence-tolerant rice genotypes. In pot experiments, variations in survival rate, shoot elongation, relative growth index, dry matter, chlorophyll, soluble sugar and starch contents were evaluated in two consecutive years under well-drained and completely submerged conditions. Principal component analysis showed that the first three axes contributed 96.820% of the total variation among the landraces, indicating wide variation between genotypes. Major traits such as survival rate, relative growth index, soluble sugar and starch contents appeared to be important determinants of phenotypic diversity among the landraces. Phenotypic coefficient of variance was higher than genotypic coefficient of variance for all the traits and all showed high heritability(90.38%–99.54%). Five rice landraces(Samudrabali, Basnamundi, Gadaba, Surudaka and Dokarakuji) were the most tolerant to submergence. When submerged for up to 14d, Samudrabali, Basnamundi and Godoba were notable for having greater survival rates than a standard submergence tolerant variety FR13 A, and also notable for elongating more vigorously and accumulating more biomass. These three landraces may therefore be especially useful in lowland rice growing areas that are affected by both moderate stagnant water and flash flooding. Molecular genotyping revealed that the submergence tolerance of Samudrabali, Basnamundi and Godoba is linked to the presence of one or more different Sub1 loci and it may well prove useful for breeding improved submergence tolerant rice varieties, thereby assising to improve yield stability in the rainfed lowland agro-ecosystem.
文摘Peanut (Arachis hypogaea L.) is one of the most important oilseed crops that are cultivated worldwide. Peanut production is now greatly limited by drought stress, which is a major environmental challenge. The urgent task for current peanut research is thus to study the underlying mechanisms of peanut drought tolerance, to identify genes that are closely associated with drought tolerance, and to create new germplasms/varieties with high drought tolerance. In this review, we summarize recent advances in the acclimation mechanisms to water deficiency and the genetic improvement of peanut for drought tolerance, and propose the perspectives for the future peanut research.
基金supported by the National Natural Science Foundation of China (60901055)
文摘This paper studies the effect of amplitude-phase errors on the antenna performance. Via builting on a worst-case error tolerance model, a simple and practical worst error tolerance analysis based on the chaos-genetic algorithm (CGA) is proposed. The proposed method utilizes chaos to optimize initial population for the genetic algorithm (GA) and introduces chaotic disturbance into the genetic mutation, thereby improving the ability of the GA to search for the global optimum. Numerical simulations demonstrate that the accuracy and stability of the worst-case analysis of the proposed approach are superior to the GA. And the proposed algorithm can be used easily for the error tolerant design of antenna arrays.
文摘Country bean, Lablab purpureus (L.) is considered one of the most important leguminous crops, but their cultivation under drought stress condition encounters challenges. In this study, an experiment has been conducted among 30 genotypes under drought condition to explore morphological diversity of qualitative and quantitative, biochemical, molecular analysis. The study identified significant variations in eight traits among the genotypes examined, with phenotypic variance exceeding genotypic variance, indicating both genetic and environmental influences. High heritability and genetic advance were observed in primary, secondary, and tertiary branch lengths, suggesting these traits are likely controlled by additive gene effects, making them effective targets for selection. Principal component analysis identified three components that made a substantial contribution, accounting for approximately 73.06% of the overall quantitative variations. Among the quantitative traits, the highest coefficient of variation (CV%) has been found in number of flowers (55.05%). While number of primary branches, primary branch length, number of secondary branches, secondary branch length, number of tertiary branches, tertiary branch length has individually more than 20% of CV%. The genotypes have been grouped into three clusters based on quantitative traits. Analysis of protein reveals that the genotypes of DS28 and DS29 have higher protein content than other genotypes. Dehydrogenase responsive genotypes have been found on DS28 and DS29 from the molecular analysis. The results suggest that the genotypes DS28 and DS29 could contribute as genetic resource of high protein content and DREB responsive, and the eight quantitative traits of 30 genotypes could be used for further breeding programme.
基金Supported by the Special Funds to the Construction of Modern Agricultural Industry Technology System(No.CARS-47-01)the “Aoshan” Talent Plan of Qingdao National Laboratory for Marine Science and Technology+1 种基金the Key Research and Development Plan of Shandong Province(No.2016GSF115019)the Agricultural Fine-Breed Project of Shandong Province(No.2016LZGC031)
文摘An abnormally high temperature produces a stress response in turbot causing large economic losses in the turbot aquaculture industry of China. A genetic improvement of the upper thermal tolerance (UTT) of turbot could allow cultured fi sh to adapt. A genetic evaluation of UTT is required for determining the practicability of including this trait into a breeding program. In this study, data were recorded from a temperature tolerance test conducted on 3 200 individual turbots from 32 full-sib groups. A cross-sectional linear model and a cross-sectional threshold probit model were used to analyze the test-period survival and a cross-sectional threshold logit model was used to analyze the test-day survival. In addition, phenotypic and genetic correlations between body weight and survival data were estimated. The estimated heritability values obtained from the cross-sectional linear model (CSL), the cross-sectional threshold (probit) model (THRp), and the cross-sectional threshold (logit) model (THRl) were 0.247 9±0.108 3, 0.288 3±0.161 2, and 0.106 9±0.045 2, respectively. The correlation coeffi cients among the full-sib family estimated breeding values (EBVs) obtained from the three models were greater than 0.998 6 and all models produced an almost identical family ranking. The accuracies of selection obtained with the CSL, THRp, and THRl model were 0.773 8, 0.775 4, and 0.784 4, respectively, the greatest from the THRl model. The genetic correlations between body weight and survival data EBVs from the CSL, THRp, and THRl models were 0.020 1,-6.201 1×10^-4 , and -3.115 4×10^-4 , respectively, and the phenotypic correlations between the two traits were -0.837 1 and -0.667 1, respectively. The findings of this study provide background information to determine the best strategy of selection for the genetic improvement of UTT in turbot.
基金Item supported by national 863 high-techproject(grand No.2001AA67010)
文摘Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated. A moderately salt-sensitive Lycopersicon esculentum Mill.‘XF 98-7’ was hybridized with a salt-tolerant Lycopersicon pimpinellifolium accession LA2184, and F2 and F3 populations were developed. The F2 population was used for SSR mapping and the F3 families were evaluated for salt tolerance in solution cultures containing 1% NaCl. A LOD score threshold of 2.0 was chosen to identify putative QTLs and to estimate their additive effect and phenotypic variation. Two genomic regions (LEtat003-SSR139, SSR119-SSR17) were detected on chromosome 4 beating significant QTLs for salt tolerance, respectively accounted for 6.03% and 8.01% of the phenotypic variation. The QTL in the marker interval of LEtat003-SSR139 showed significant negative effects, while the other QTL in the marker interval of SSR119-SSR17 showed significant positive effects. The identification of genomic locations with both positive and negative effects on this trait suggests the likelihood of recovering transgressive segregants in progeny derived from these parental lines. Results and its application in developing salt-tolerant tomatoes as molecular markers are discussed in this paper.
文摘Six tropical maize inbred lines were crossed in a half diallel fashion and evaluated along with their F1 hybrids under low N (0 kg/ha) and high N(170 kg/ha), for grain yield, ear diameter, ear length, number of rows per ear, 100-kernel weight, ear leaf area, shoot dry weight, ear leaf chlorophyll content and plant height to determine their response to different level of N. Grain yield and ear leaf chlorophyll content measured by 48% lower under -N than under + N, and were most affected by -N. Ear length had the highest reduction under -N of 22%. Plant height and shoot dry weight were both reduced by 28%. Diallel analysis indicated significant additive as well as dominance variance for grain yield under -N. The same results were shown when one tolerant x nontolerant cross from the diallel hybrids was subjected to generation mean analysis which also indicated significant epistatic effects. These results suggest that S1 or S2 progeny selection may be an effective means of improving grain yield of tropical maize under low soil N.
基金supported by the grant from Georgian National Science Foundation,No.GNSF/ST07/6-234
文摘Pain is a sensation related to potential or actual damage in some tissue of the body. The mainstay of medical pain therapy remains drugs that have been around for decades, like non-steroidal anti-inflammatory drugs (NSAIDs), or opiates. However, adverse effects of opiates, particularly tolerance, limit their clinical use. Several lines of investigations have shown that systemic (intraperitoneal) administration of NSAIDs induces antinociception with some effects of tolerance. In this review, we report that repeated microinjection of NSAIDs analgin, clodifen, ketorolac and xefocam into the central nucleus of amygdala, the midbrain periaqueductal grey matter and nucleus raphe magnus in the following 4 days result in progressively less antinociception compared to the saline control testing in the tail-flick reflex and hot plate latency tests. Hence, tolerance develops to these drugs and cross-tolerance to morphine in male rats. These findings strongly support the suggestion of endogenous opioid involvement in NSAIDs antinociception and tolerance in the descending pain-control system. Moreover, the periaqueductal grey-rostral ventro-medial part of medulla circuit should be viewed as a pain-modulation system. These data are important for human medicine. In particular, cross-tolerance between non-opioid and opioid analgesics should be important in the clinical setting.
文摘Salt and low temperature were both very important factors for soybean production. It was necessary to improve the salt stress and low-temperature tolerance of soybean. The main purpose of this paper was to map the quantitative trait loci(QTL) related with salt tolerance and low- temperature tolerance at germination stage with backcross introgression lines(BILs),and analyze the genetic overlap between them. There were 22 QTL located with BC2 F4 introgression populations after salt stress,and 15 QTL were mapped after low-temperature stress. Seven overlapping QTLs between salt tolerance and low-temperature tolerance were detected on 6 linkage groups at germination stage. In total,there were 31.81 % of salt tolerance and low-temperature tolerance loci existed genetic overlap.
基金supported by a project grant from the Education Department of Heilongjiang Province, China (Grant No. 11511248).
文摘ICE1, an Arabidopsis thaliana transcription factor gene, was cloned by RT-PCR and successfully transformed into rice variety Kenjiandao 10 by the Agrobacterium-mediated transformation method. PCR amplification and Southern blot analysis indicated that ICE1 had been integrated into rice genome. Compared with the non-transgenic plants, the transgenic plants exhibited high resistance to hygromycin B and were consistent with the Mendelian inheritance of a single copy of the transgenic ICE1. Under the low temperature stress, the transgenic plants showed the lower mortality rate and the increased proline content. These results suggest that the Arabidopsis ICE1 is functional in rice and the over-expression of ICE1 improves the tolerance to cold stress in rice.
基金supportedby China National Natural Science Foundation(30160043,30260060) the Natural ScienceFoundation of Yunnan Province(2004CO010Z).
文摘Genetic analysis showed that cold tolerance at booting stage of near-isogenic lines (NILs) of Kunmingxiaobaigu was controlled by a gene with large phenotypic variance. One hundred and sixty-four simple sequence repeats (SSR) distributed over 12 chromosomes were used to screen polymorphism between Towata (recurrent parent, RP) and near-isogenic line pool (NILP), and two SSR markers at the long arm of chromosome 5 showed polymorphism in comparison with RP genome. Of the two markers, RM31 was found possibly linked with the cold tolerance gene at booting stage through one-way ANOVA. Twelve SSR markers around RM31 were then used to detect polymorphism between RP and NIL, and only RM7452 had polymorphism. The gene of cold tolerance at booting stage was further mapped on chromosome 5 between RM7452 and RM31 with genetic distances of 4.8 cM and 8.0 cM, respectively. This gene explained 10.50% of phenotypic variance and 5.10% of phenotypic variance of fully filled grains, and was tentatively designated as Ctb(t).
文摘Tolerance charting is an effective tool to determine the optimal allocation of working dimensions and working tolerances such that the blueprint dimensions and tolerances can be achieved to accomplish the cost objectives.The selection of machining datum and allocation of tolerances are critical in any machining process planning as they directly affect any setup methods/machine tools selection and machining time.This paper mainly focuses on the selection of optimum machining datums and machining tolerances simultaneously in process planning.A dynamic tolerance charting constraint scheme is developed and implemented in the optimization procedure.An optimization model is formulated for selecting machining datum and tolerances and implemented with an algorithm namely Elitist Non-Dominated Sorting Genetic Algorithm(NSGA-II).The computational results indicate that the proposed methodology is capable and robust in finding the optimal machining datum set and tolerances.
文摘In order to improve stress tolerances of turf-type tall fescue (Festuca arundinacea Schreb.), Agrobacterium tumefaciens strain EHA105 carrying plasmid pCMD containing stress tolerance-related CBF1 gene from Arabidopsis thaliana was used to transform mature seeds-derived embryogenic calli of four cultivars. A total of 112 transgenic plants were regenerated from 32 independent lines and verified by histochemical detection of GUS activity, PCR assay and Southern hybridization analysis. The transformation frequency ranged from 0.92 to 2.87% with apparent differences among the cultivars. Stress tolerances of transgenic plants were enhanced, which was shown by the facts that transgenic plants had distinct growth superiority and significantly higher survival rate than non-transformed ones under high salinity and high osmosis stresses, and that relative electronic conductivity of in vitro leaves treated with low and high temoeratures, dehvdration and high salinity stresses was 25-30% lower in transgenic plants than in control plants.In addition,it was observed that growth of transgenic plants was inhibited due to constitutive overexpression of CBF1 gene under normal environmental conditions.
基金supported by the National Natural Science Foundation of China(No.51472115)Double Firstclass Innovation Team of China Pharmaceutical University(CPU2018GY40).
文摘Genetic diseases seriously threaten human health and have always been one of the refractory conditions facing humanity.Currently,gene therapy drugs such as siRNA,shRNA,antisense oligonucleotide,CRISPR/Cas9 system,plasmid DNA and miRNA have shown great potential in biomedical applications.To avoid the degradation of gene therapy drugs in the body and effectively deliver them to target tissues,cells and organelles,the development of excellent drug delivery vehicles is of utmost importance.Viral vectors are the most widely used delivery vehicles for gene therapy in vivo and in vitro due to their high transfection efficiency and stable transgene expression.With the development of nanotechnology,novel nanocarriers are gradually replacing viral vectors,emerging superior performance.This review mainly illuminates the current widely used gene therapy drugs,summarizes the viral vectors and non-viral vectors that deliver gene therapy drugs,and sums up the application of gene therapy to treat genetic diseases.Additionally,the challenges and opportunities of the field are discussed from the perspective of developing an effective nano-delivery system.
文摘Salinity stress is one of the most serious factors limiting the distribution and productivity of crops and forest trees. The detrimental effects of salt on plants are a consequence of both a water deficit resulting in osmotic stress and the effects of excess sodium ions on critical biochemical process. A novel approach to improve salt tolerance has been established by using the technology of plant genetic transformation and using loblolly pine (Pinus taeda L.) as a model plant. Mature zygotic embryos of loblolly pine were infected with Agrobacterium tumefaciens strain LBA 4404 harbouring the plasmid pBIGM which carrying the mannitol-1-phosphate dehydrogenase (Mt1D) and glucitol-6-phosphate dehydrogenase (GutD). Organogenic transgenic calli and transgenic regenerated plantlets were produced on selection medium containing 15mg/L kanamycin and confirmed by Southern blot analysis of genomic DNA. Salt tolerance assays demonstrated that the salt tolerance of transgenic calli and regenerated plantlets were increased. These results suggested that an efficient Agrobacterium tumefaciens-mediated transformation protocol for stable integration of foreign genes into loblolly pine has been developed and this could be useful for the future studies on engineering breeding of conifers.
基金National Natural Science Foundation of China(No.61304218)
文摘Traditionally,parameter design is carried out prior to tolerance design. However, this two-step design strategy cannot guarantee optimal robustness for products' quality. The proposed integrated robust design method determined the optimal parameter and tolerance simultaneously by calculating the maximum tolerance region,thereby improving the quality of products. In addition,the proposed method did not need uncertainty analysis to obtain the maximum tolerance region,so that the calculation cost could be decreased. And the method avoided the difficulty of gaining costtolerance function as maximum tolerance region represented both demand of cost and robust. Finally,an amplifier circuit case was conducted for verification purpose. Based on the results, the proposed approach could provide robust solution with optimal maximum tolerance region.