An experimental investigation is performed on side wall deformation at the pendant convective pass (PCP) in a 300 MW and a 600 MW utility boiler. The temperature distributions are measured on the side wall areas of th...An experimental investigation is performed on side wall deformation at the pendant convective pass (PCP) in a 300 MW and a 600 MW utility boiler. The temperature distributions are measured on the side wall areas of the water-cooled wall, the PCP and the horizontal convective pass (HCP) in the two utility boilers. These experiments show that there are great temperature differences in the side wall areas during the startup process in both utility boilers. These temperature differences can reach 80~150 °C with the side wall temperature in the PCP area higher than those in the water-cooled wall and the HCP. The highest temperature in the PCP is close to the flue gas side temperature at the same position in the horizontal flue gas pass. Thermal stress analyses are conducted in the side wall areas in the water-cooled wall, the PCP and the HCP with the software ANSYS. The results show that, at great temperature differences, the PCP side wall undergoes negative thermal stresses that exceed the yield strength causing deformation in the PCP side wall.展开更多
The finite element analysis and calculation were performed for the blanket first-wall made of SiC/SiC composite material for Advanced Steady-state Tokamak Reactor 2, A-SSTR2, which at present is conceptually designed ...The finite element analysis and calculation were performed for the blanket first-wall made of SiC/SiC composite material for Advanced Steady-state Tokamak Reactor 2, A-SSTR2, which at present is conceptually designed in Naka Fusion research establishment, JAERI. Comparison analysis and design window were analyzed using the finite element code ADINA 7.4. Through a 2D calculation for various geometrical configurations and sensitive material properties, a fundamental guideline for the first wall and blanket design are established with respect to maximum temperature, thermal and mechanical stress for many configurations. To satisfy hydrodynamic requirement, a4d4 (the dimension of coolant channel is 4 mm x 8 mm, and the distance between neighboring channels is 4 mm) was chosen as a design point for high thermal conductivity up to 50 W/m.K. In order to find a good solution for lower conductivity, more elaborate work should be done in the future. Nonetheless, the outline of design window for a specific structural material is very useful for the future A-SSTR2 first wall design.展开更多
随着大量新能源发电的并网,火电机组循环流化床锅炉(circulating fluidized bed boiler, CFBB)参与电网调峰时,机组的负荷在不断变化,机组的安全性受到了挑战,研究调峰时锅炉受热面管的温度与应力是必要的。通过数值模拟的方法对深度调...随着大量新能源发电的并网,火电机组循环流化床锅炉(circulating fluidized bed boiler, CFBB)参与电网调峰时,机组的负荷在不断变化,机组的安全性受到了挑战,研究调峰时锅炉受热面管的温度与应力是必要的。通过数值模拟的方法对深度调峰运行下的二维膜式水冷壁管的温度、变形量和热应力进行分析。研究结果表明:CFBB深度调峰时热负荷由锅炉最大连续蒸发量(boiler maximum continuous rating, BMCR)至20%BMCR,膜式水冷壁管的温度、变形量和热应力都在逐渐减小;BMCR工况时,水冷壁管的温度、变形量和热应力最大分别为431.53℃、0.263 mm、131 MPa,均在水冷壁管材允许的范围内。热负荷由BMCR到20%BMCR和由20%BMCR到BMCR不断的调峰过程中,CFBB膜式水冷壁管的温度、变形量和热应力在不断交替变化,水冷壁管在交变的温度、变形量和热应力作用下疲劳损伤不断累积,最终因疲劳而失效。展开更多
基金supported by Program for Changjiang Scholars and Innovative Research Team in University (No. PCSIRT0720)the Overseas Returnee Scholar Foundation of North China Electric Power University, China
文摘An experimental investigation is performed on side wall deformation at the pendant convective pass (PCP) in a 300 MW and a 600 MW utility boiler. The temperature distributions are measured on the side wall areas of the water-cooled wall, the PCP and the horizontal convective pass (HCP) in the two utility boilers. These experiments show that there are great temperature differences in the side wall areas during the startup process in both utility boilers. These temperature differences can reach 80~150 °C with the side wall temperature in the PCP area higher than those in the water-cooled wall and the HCP. The highest temperature in the PCP is close to the flue gas side temperature at the same position in the horizontal flue gas pass. Thermal stress analyses are conducted in the side wall areas in the water-cooled wall, the PCP and the HCP with the software ANSYS. The results show that, at great temperature differences, the PCP side wall undergoes negative thermal stresses that exceed the yield strength causing deformation in the PCP side wall.
文摘The finite element analysis and calculation were performed for the blanket first-wall made of SiC/SiC composite material for Advanced Steady-state Tokamak Reactor 2, A-SSTR2, which at present is conceptually designed in Naka Fusion research establishment, JAERI. Comparison analysis and design window were analyzed using the finite element code ADINA 7.4. Through a 2D calculation for various geometrical configurations and sensitive material properties, a fundamental guideline for the first wall and blanket design are established with respect to maximum temperature, thermal and mechanical stress for many configurations. To satisfy hydrodynamic requirement, a4d4 (the dimension of coolant channel is 4 mm x 8 mm, and the distance between neighboring channels is 4 mm) was chosen as a design point for high thermal conductivity up to 50 W/m.K. In order to find a good solution for lower conductivity, more elaborate work should be done in the future. Nonetheless, the outline of design window for a specific structural material is very useful for the future A-SSTR2 first wall design.