Age-related macular degeneration(AMD)is a leading cause of blindness worldwide.AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neuros...Age-related macular degeneration(AMD)is a leading cause of blindness worldwide.AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neurosensory retina.Currently,there are limited treatment options for dry AMD outside of lifestyle modification and nutrient supplementation.Risuteganib[Luminate(ALG-1001),Allegro Ophthalmics,CA,USA]is an intravitreally administered inhibitor of integrin heterodimersαVβ3,αVβ5,α5β1,andαMβ2.It is currently undergoing clinical trials for the treatment of dry AMD and diabetic macular edema(DME).Preclinical studies have shown that risuteganib has an effect on the pathways for angiogenesis,inflammation,and vascular permeability.Ongoing clinical trials have had promising results showing improvements in patient best corrected visual acuity(BCVA)and reduced central macular thickness measured by optical coherence tomography(OCT).There is a pressing need for treatments for dry AMD and while risuteganib appears to have a potential benefit for patients,more data are needed before one can truly evaluate its efficacy.This narrative review provides a concise summary of the most up to date data regarding the proposed mechanism of action of risuteganib in the treatment of nonexudative AMD and DME as well as the results from recent phase 1 and phase 2 clinical trials.展开更多
The common practice in AMD prevention is a dry cover technique. In this technique, rock that is potential in producing acidity (PAF) will be placed below non-acid producing rock (NAF). Depends on NAF availability in t...The common practice in AMD prevention is a dry cover technique. In this technique, rock that is potential in producing acidity (PAF) will be placed below non-acid producing rock (NAF). Depends on NAF availability in the mine site situation, organic covers can be used to prevent diffusion of oxygen into reactive sulphide wastes and subsequently to eliminate sulphide compounds oxidation and generation of acidic waters. The utilization of additional material cover layer is proposed, by using fly ash and organic material combination. To investigate the possibility of using these materials, a column leaching test in the laboratory scale was conducted with several scenarios of simulation. By comparing between column with different thickness of fly ash and organic material, the leachate water behavior is observed in the experiment, including the measurement of water quality (pH and EC), major cations-anions. The result suggests the possible thickness of fly ash (FA) and organic material (OM) as cover layer material, especially in the case of mine with domination of PAF rock material.展开更多
Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in ...Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in waste dump for the prevention of AMD in Indonesia by virtue of low cost and availability of waste rocks for a cover layer. However, the failure of the system caused by the lack of information related to the construction of cover system in mines, which leads to AMD, has been reported recently in Indonesia. In this study, the field investigation was conducted in pit and waste dump in open cast coal mine in Indonesia with the aim of obtaining the information on the construction of a cover layer and backfilling conditions of waste rocks in the waste dump. The rock samples taken in two areas of the mine were analyzed by geochemical analysis and sequential extraction with acids. The results indicated that Net Acid Producing Potential (NAPP) of the rocks in the waste dump down to 100 cm depth in both areas was from 10 to 30 kg H<sub>2</sub>SO<sub>4</sub>/ton, suggesting that Potentially Acid Forming (PAF) was backfilled in a cover layer. The backfill of PAF was contrary to the concept of cover system, which caused the failure of constructing a cover layer. The cause of the failure was likely attributed to the shortage of cover rocks which are classified as Non Acid Forming (NAF) or the failure of proper placement of them by an operational problem in the areas. Moreover, the results of the extraction with acids suggested that the form of iron and sulfur has to be taken into account to discuss the occurrence of AMD.展开更多
文摘Age-related macular degeneration(AMD)is a leading cause of blindness worldwide.AMD most commonly affects older individuals and is characterized by irreversible degeneration of the retinal pigment epithelium and neurosensory retina.Currently,there are limited treatment options for dry AMD outside of lifestyle modification and nutrient supplementation.Risuteganib[Luminate(ALG-1001),Allegro Ophthalmics,CA,USA]is an intravitreally administered inhibitor of integrin heterodimersαVβ3,αVβ5,α5β1,andαMβ2.It is currently undergoing clinical trials for the treatment of dry AMD and diabetic macular edema(DME).Preclinical studies have shown that risuteganib has an effect on the pathways for angiogenesis,inflammation,and vascular permeability.Ongoing clinical trials have had promising results showing improvements in patient best corrected visual acuity(BCVA)and reduced central macular thickness measured by optical coherence tomography(OCT).There is a pressing need for treatments for dry AMD and while risuteganib appears to have a potential benefit for patients,more data are needed before one can truly evaluate its efficacy.This narrative review provides a concise summary of the most up to date data regarding the proposed mechanism of action of risuteganib in the treatment of nonexudative AMD and DME as well as the results from recent phase 1 and phase 2 clinical trials.
文摘The common practice in AMD prevention is a dry cover technique. In this technique, rock that is potential in producing acidity (PAF) will be placed below non-acid producing rock (NAF). Depends on NAF availability in the mine site situation, organic covers can be used to prevent diffusion of oxygen into reactive sulphide wastes and subsequently to eliminate sulphide compounds oxidation and generation of acidic waters. The utilization of additional material cover layer is proposed, by using fly ash and organic material combination. To investigate the possibility of using these materials, a column leaching test in the laboratory scale was conducted with several scenarios of simulation. By comparing between column with different thickness of fly ash and organic material, the leachate water behavior is observed in the experiment, including the measurement of water quality (pH and EC), major cations-anions. The result suggests the possible thickness of fly ash (FA) and organic material (OM) as cover layer material, especially in the case of mine with domination of PAF rock material.
文摘Acid Mine Drainage (AMD) which occurs when sulfide minerals are exposed to water and oxygen with an excavation is one of the serious environmental problems in the world. A dry cover system is generally constructed in waste dump for the prevention of AMD in Indonesia by virtue of low cost and availability of waste rocks for a cover layer. However, the failure of the system caused by the lack of information related to the construction of cover system in mines, which leads to AMD, has been reported recently in Indonesia. In this study, the field investigation was conducted in pit and waste dump in open cast coal mine in Indonesia with the aim of obtaining the information on the construction of a cover layer and backfilling conditions of waste rocks in the waste dump. The rock samples taken in two areas of the mine were analyzed by geochemical analysis and sequential extraction with acids. The results indicated that Net Acid Producing Potential (NAPP) of the rocks in the waste dump down to 100 cm depth in both areas was from 10 to 30 kg H<sub>2</sub>SO<sub>4</sub>/ton, suggesting that Potentially Acid Forming (PAF) was backfilled in a cover layer. The backfill of PAF was contrary to the concept of cover system, which caused the failure of constructing a cover layer. The cause of the failure was likely attributed to the shortage of cover rocks which are classified as Non Acid Forming (NAF) or the failure of proper placement of them by an operational problem in the areas. Moreover, the results of the extraction with acids suggested that the form of iron and sulfur has to be taken into account to discuss the occurrence of AMD.