Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu--the main atmospheric composition monitoring s...Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu--the main atmospheric composition monitoring station in the Pearl River Delta (PRD) region of China. During the dry season (October to February), mean values of the aerosol optical depth (AOD) at 550 nm, the Angstrom exponent, and the single scattering albedo at 440 nm (SSA) were 0.54, 1.33 and 0.87, respectively. About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October (- 0.10 μm3 μm-2). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere (FATM), and at the top of the atmosphere, was -33.4± 7.0, 26.1 ± 5.6 and -7.3 ±2.7 W m-2, respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were -60.0 ±7.8, 47.3 ± 8.3 and -12.8 ±3.1 W m-2, respectively. Moreover, during the study period, FATM showed a significant decreasing trend (p 〈 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.展开更多
A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 con...A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.展开更多
基金funded by the National Natural Science Foundation of China (Grant Nos. 41475105, 41475138,41405133 and 41605105)the National Key Project of MOST (Grant No. 2016YFC0202003, 2016YFC0203305, 2016YFC0201901)+2 种基金the Guangdong Province Science and Technology Plan (Grant No. 2015A020215020)the Science and Technology Innovative Research Team Plan of Guangdong Meteorological Bureau (Grant No. 201506)the Science and Technology Research Project of Guangdong Meteorological Bureau (Grant No. 2015B06)
文摘Aerosol optical properties and direct radiative effects on surface irradiance were examined using seven years (2006-2012) of Cimel sunphotometer data collected at Panyu--the main atmospheric composition monitoring station in the Pearl River Delta (PRD) region of China. During the dry season (October to February), mean values of the aerosol optical depth (AOD) at 550 nm, the Angstrom exponent, and the single scattering albedo at 440 nm (SSA) were 0.54, 1.33 and 0.87, respectively. About 90% of aerosols were dominated by fine-mode strongly absorbing particles. The size distribution was bimodal, with fine-mode particles dominating. The fine mode showed a peak at a radius of 0.12 μm in February and October (- 0.10 μm3 μm-2). The mean diurnal shortwave direct radiative forcing at the surface, inside the atmosphere (FATM), and at the top of the atmosphere, was -33.4± 7.0, 26.1 ± 5.6 and -7.3 ±2.7 W m-2, respectively. The corresponding mean values of aerosol direct shortwave radiative forcing per AOD were -60.0 ±7.8, 47.3 ± 8.3 and -12.8 ±3.1 W m-2, respectively. Moreover, during the study period, FATM showed a significant decreasing trend (p 〈 0.01) and SSA increased from 0.87 in 2006 to 0.91 in 2012, suggesting a decreasing trend of absorbing particles being released into the atmosphere. Optical properties and radiative impacts of the absorbing particles can be used to improve the accuracy of inversion algorithms for satellite-based aerosol retrievals in the PRD region and to better constrain the climate effect of aerosols in climate models.
基金supported by the National Science Foundation of China (No.40976063)International Cooperative Projects of MOST (No.2010DFA91350)
文摘A WRF-Chem model including a comprehensive gas-phase nitrogen chemistry module was used to simulate a severe dust event appearing in the eastern China on 19-25 March, 2002. The modeling result well reproduced PM10 concentrations in various distances from the dust sources and the transport pathway of the dust strom. The results showed that both the concentrations and the dry deposition fluxes of PM10 increased over the China seas during the dust event following the passage of a cold front system. The maximum fluxes of PM10 in the Yellow Sea and the East China Sea during the dust event were 5.5 and 8.4 times of those before the event, respectively. However, the temporal variations of the dry deposition fluxes of particulate inorganic nitrogen differed over the Yellow Sea from those over the East China Sea. Nitrate and ammonium in the whole northern China rapidly decreased because of the intrusion of dust-loaded air on 19 March. The dust plume arrived in the Yellow Sea on 20 March, decreasing the particulate inorganic nitrogen in mass concentration accordingly. The minimum dry deposition fluxes of nitrate and ammonium in the Yellow Sea were about 3/5 and 1/6 of those before the dust arrival, respectively. In contrast, when the dust plume crossed over the Yangtze Delta area, it became abundant in nitrate and ammonium and increased the concentrations and dry deposition fluxes of particulate inorganic nitrogen over the East China Sea, where the maximum dry deposition fluxes of nitrate and ammonium increased approximately by 4.1 and 2.6 times of those prior to the dust arrival.