The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure...The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatur.es from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated Irom the (~2+ ti'action by tOrming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the wa- ter-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data ot gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.展开更多
Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to...Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.展开更多
Drying crack is a common phenomenon occurring during moisture discharge from wood,reducing efficient wood utilization.Drying crack is primarily caused by drying stress,and the reasonable methods for determining drying...Drying crack is a common phenomenon occurring during moisture discharge from wood,reducing efficient wood utilization.Drying crack is primarily caused by drying stress,and the reasonable methods for determining drying stress are sparse.In this study,the initiation and propagation of cracks during wood discs drying were simulated using the extended finite element method(XFEM).The distribution of drying stress and displacement was analyzed at different crack conditions based on the simulation results.This study aimed to solve the problem of the limitation of drying stress testing methods and provide a new idea for the study of wood drying stress.The numerical simulation results are found in good agreement with the experimental results,thus corroborating the feasibility of XFEM in modeling drying crack of wood discs.The stress concentration was observed at the crack tip region,while a minor stress was presented in the region of crack passing through,indicating that the crack formation process was also a process of releasing drying stress.Further,more energy was required to form double cracks in comparison with the single crack mode.展开更多
基金Supported by the National iqatural Science Foundation of China (20925623, U1162205).
文摘The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion. The effect of temperature, pressure and initial gas-liquid ratio on the hydrate formation was studied, respectively. The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatur.es from 274.15 to 277.15 K. The results showed that hydrogen and methane can be separated Irom the (~2+ ti'action by tOrming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method, and the hydrate formation rate can be enhanced in the wa- ter-in-oil emulsion compared to pure water. The experiments provided the basic data for designing the industrial process, and setting the suitable operational conditions. The measured data ot gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.
基金supported by the National Natural Science Foundation of China(Grant No.41972265)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2021-57)+1 种基金the Gansu Province Science Foundation(Grant No.20JR10RA492)Special thanks to the Environmental Research and Education Foundation for supporting the first author(Y.Tan)through a fellowship for his study at the University of Wisconsin-Madison.
文摘Experiments were conducted to evaluate the healing of drying cracks in air-dried bentonite-sand blocks after hydration and swelling in groundwater,providing justifications to simplify the protection of blocks prior to installation in a high-level radioactive waste repository.Synthetic groundwater was prepared to represent the geochemistry of Beishan groundwater,and was used to hydrate the blocks during the swelling pressure and swelling strain measurements,as Beishan is the most promising site for China's repository.Healing of the surface cracks was recorded by photography,and healing of the internal cracks was visualized by CT images and hydraulic conductivity of air-dried blocks.The results indicate that the maximum swelling pressure and swelling strain are primarily affected by the geochemistry of Beishan groundwater,but not affected by the drying cracks.The maximum swelling pressure and swelling strain of air-dried blocks are comparable to or even higher than the pressure and strain of fresh blocks.The maximum swelling pressure measured in strong(i.e.high ion strength)Beishan groundwater was 44%of the pressure measured in deionized(DI)water,and the maximum swelling strain was reduced to 23%of the strain measured in DI water.Nevertheless,the remained swelling of the blocks hydrated in strong Beishan groundwater was sufficient to heal the surface and internal drying cracks,as demonstrated by the pictures of surface cracks and CT images.The hydraulic conductivity of the air-dried block permeated with strong groundwater was comparable(3.7×higher)to the hydraulic conductivity of the fresh block,indicating the self-healing of drying cracks after hydration and swelling in groundwater.A simplified method of protecting the block with plastic wraps before installation is recommended,since the remained swelling of the block hydrated in Beishan groundwater is sufficient to heal the drying cracks.
基金financed by a Grant-in-Aid for Scientific Research from the Youth Program of National Natural Science Foundation of China(No.31800478)the National Natural Science Foundation of China(Grant Nos.31870535,32122058)。
文摘Drying crack is a common phenomenon occurring during moisture discharge from wood,reducing efficient wood utilization.Drying crack is primarily caused by drying stress,and the reasonable methods for determining drying stress are sparse.In this study,the initiation and propagation of cracks during wood discs drying were simulated using the extended finite element method(XFEM).The distribution of drying stress and displacement was analyzed at different crack conditions based on the simulation results.This study aimed to solve the problem of the limitation of drying stress testing methods and provide a new idea for the study of wood drying stress.The numerical simulation results are found in good agreement with the experimental results,thus corroborating the feasibility of XFEM in modeling drying crack of wood discs.The stress concentration was observed at the crack tip region,while a minor stress was presented in the region of crack passing through,indicating that the crack formation process was also a process of releasing drying stress.Further,more energy was required to form double cracks in comparison with the single crack mode.