期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Simultaneous desulfurization and denitrification of sintering flue gas via composite absorbent 被引量:28
1
作者 Jie Wang Wenqi Zhong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1104-1111,共8页
Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), ... Experiments on simultaneous absorption of SO_2 and NO_X from sintering flue gas via a composite absorbent NaClO_2/NaClO were carried out. The effects of various operating parameters such as NaClO_2 concentration(ms), NaClO concentration(mp), molar ratio of NaClO_2/NaClO(M), solution temperature(TR), initial solution pH, gas flow(Vg) and inlet concentration of SO_2(CS) and NO(CN) on the removal efficiencies of SO_2 and NO were discussed. The optimal experimental conditions were determined to be initial solution pH = 6, TR=55 °C and M = 1.3 under which the average efficiencies of desulfurization and denitrification could reach99.7% and 90.8%, respectively. Moreover, according to the analysis of reaction products, it was found that adding NaClO to NaClO_2 aqueous solution is favorable for the generation of ClO_2 and Cl_2 which have significant effect on desulfurization and denitrification. Finally, engineering experiments were performed and obtained good results demonstrating that this method is practicable and promising. 展开更多
关键词 Simultaneous desulfurization and denitrification SINTERING flue gas COMPOSITE ABSORBENT
下载PDF
Simultaneous desulfurization and denitrification of flue gas by pre-ozonation combined with ammonia absorption 被引量:5
2
作者 Baowei Wang Shumei Yao Yeping Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第9期2457-2466,共10页
A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized ... A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study.The flue gas containing 200 mg·m^-3NO,1000-4000 mg·m^-3SO(2,)3%-9%O(2)and 10%-20%CO(2)was first oxidized b(y)O3 and then absorbed by ammonia in a bubbling reactor.Increasing the ammonia concentration or the SO2 content in flue gas can promote the absorption of NOx and extend the effective absorption time.On the contrary,both increasing the absorbent temperature or the O(2)content shorten the effective absorption time of NO((x.))The change of solution pH had substantial influence on NOx absorption.In the presence of CO(2)the NOx removal efficiency reached 89.2%when the absorbent temperature was raised to 60℃and the effective absorption time can be maintained for 8 h,which attribute to the buffering effect in the absorbent.Besides,both the addition of Na(2)S2 O3 and urea can promote the NOx removal efficiency when the absorbent temperature is 25℃and the addition of Na(2)S2 O3 had achieved better results.The advantage of adding Na(2)S2 O3 became less evident at higher absorbent temperature and coexistence of CO(2.)In all experiments,SO(2)removal efficiency was always above 99%,and it was basically not affected by the above factors. 展开更多
关键词 flue gas Ammonia absorption desulfurization denitrification PRE-OZONATION
下载PDF
Influence of Thermally Treated Flue Gas Desulfurization(FGD) Gypsum on Performance of the Slag Powder Concrete 被引量:2
3
作者 GUO Xiaolu SHI Huisheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1122-1127,共6页
The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200... The feasibility of flue gas desulphurization (FGD) as concrete admixture was studied. A combined concrete admixture of the thermally-treated FGD gypsum and slag powder was explored. The FGD gypsum was roasted at 200℃ for 60 min and then mixed with the slag powder to form FGD gypsum-slag powder combined admixture in which the SO3 content was 3.5wt%. Cement was partially and equivalently replaced by slag powder alone or FGD gypsum-slag powder, at concentration of 25wt%, 40wt%, and 50wt%, respectively. The setting times, hydration products, total porosity and pore size distributions of the paste were determined. The compressive strength and drying shrinkage of cement mortar and concrete were also tested. The experimental results show that, in the presence of FGD gypsum, the setting times are much slower than those of pastes in the absence of FGD gypsum. The combination of FGD gypsum and slag powder provides synergistic benefits above that of slag powder alone. The addition of FGD gypsum provides benefit by promoting ettringite formation and forms a compact microstructure, increasing the compressive strength and reduces the drying shrinkage of cement mortar and concrete. 展开更多
关键词 flue gas desulfurization (FGD) gypsum slag powder compressive strength drying shrinkage MORTAR CONCRETE
下载PDF
O_(3)oxidation combined with semi-dry method for simultaneous desulfurization and denitrification of sintering/pelletizing flue gas 被引量:9
4
作者 Fagao Liu Maoyu Cai +2 位作者 Xiaolong Liu Tingyu Zhu Yang Zou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2021年第6期253-263,共11页
With the vigorous development of China's iron and steel industry and the introduction of ultra-low emission policies,the emission of pollutants such as SO_(2)and NO x has received unprecedented attention.Consideri... With the vigorous development of China's iron and steel industry and the introduction of ultra-low emission policies,the emission of pollutants such as SO_(2)and NO x has received unprecedented attention.Considering the increase of the proportion of semi-dry desulfurization technology in the desulfurization process,several semi-dry desulphurization technologies such as flue gas circulating fluidized bed(CFB),dense flow absorber(DFA)and spray drying absorption(SDA)are briefly summarized.Moreover,a method for simultaneous treatment of SO_(2)and NOx in sintering/pelletizing flue gas by O_(3)oxidation combined with semidry method is introduced.Meantime,the effects of key parameters such as O_(3)/NO molar ratio,Ca SO_(3),SO_(2),reaction temperature,Ca/(S+2 N)molar ratio,droplet size and approach to adiabatic saturation temperature(AAST)on denitrification and desulfurization are analyzed.Furthermore,the reaction mechanism of denitrification and desulfurization is further elucidated.Finally,the advantages and development prospects of the new technology are proposed. 展开更多
关键词 O_(3) OXIDATION Semi-dry method Sintering/pelletizing flue gas desulfurization and denitrification
原文传递
Experimental and mechanism studies on simultaneous desulfurization and denitrification from flue gas using a flue gas circulating fluidized bed 被引量:11
5
作者 ZHAO Yi XU PeiYao +1 位作者 SUN XiaoJun WANG LiDong 《Science China Chemistry》 SCIE EI CAS 2007年第1期135-144,共10页
The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fl... The oxidizing highly reactive absorbent was prepared from fly ash,industry lime,and an oxidizing additive M.Experiments of simultaneous desulfurization and denitrification were carried out in a flue gas circulating fluidized bed(CFB).The effects of influencing factors and calcium availability were also investigated on the removal efficiencies of desulfurization and denitrification.Removal efficiencies of 95.5%for SO2 and 64.8%for NO were obtained respectively under the optimal experimental conditions. The component of the spent absorbent was analyzed with chemical analysis methods.The results in- dicated that more nitrogen species appeared in the spent absorbent except sulfur species.A scanning electron microscope(SEM)and an accessory X-ray energy spectrometer were used to observe micro-properties of the samples,including fly ash,oxidizing highly reactive absorbent and spent absorbent.The simultaneous removal mechanism of SO2 and NO based on this absorbent was pro- posed according to the experimental results. 展开更多
关键词 flue gas circulating fluidized bed simultaneous desulfurization and denitrification OXIDIZING highly reactive ABSORBENT MECHANISM
原文传递
Study on method and mechanism for simultaneous desulfurization and denitrification of flue gas based on the TiO_2 photocatalysis 被引量:9
6
作者 ZHAO Yi, ZHAO Li, HAN Jing, XU YongYi & WANG ShuQin School of Environmental Science & Engineering, North China Electric Power University, Baoding 071003, China 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第3期268-276,共9页
Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influenc... Based on the TiO2 photocatalysis mechanism, a new method of simultaneous desulfurization and denitrification from flue gas was proposed. Preparation of TiO2 photocatalyst, design of photocatalysis reactor and influencing factors for simul- taneous removal of SO2 and NO, and removal mechanism of SO2 and NO were studied. After the optimal values of concentration of O2 in flue gas, the relative humidity of flue gas and the irradiation time in the photocatalysis reactor were used, the efficiencies of removal for SO2 and NO can be achieved above 98% and about 67%, respectively. According to the results of removal products analysis, the re- moval mechanism of SO2 and NO based on TiO2 photocatlysis can be put forward, namely, SO2 was oxidized to SO3 partly, the bulk of NO was oxidized to NO2, and both were removed by resorbing finally. 展开更多
关键词 TiO2 PHOTOCATALYSIS flue gas simultaneous desulfurization and denitrification reaction MECHANISM
原文传递
Activity and characteristics of "Oxygen-enriched" highly reactive absorbent for simultaneous flue gas desulfurization and denitrification 被引量:2
7
作者 Yi ZHAO Tianxiang GUO Zili ZANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2015年第2期222-229,共8页
An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was car... An "Oxygen-enriched" highly reactive absor- bent was prepared by mixing fly ash, lime and a small quantity of KMnO4 for simultaneous desulfiarization and denitrification. Removal of SO2 and NO simultaneously was carried out using this absorbent in a flue gas circulating fluidized bed (CFB). The highest simultaneous removal efficiency, 94.5% of SO2 and 64.2% of NO, was achieved under the optimal experiment conditions. Scanning Electron Microscope (SEM) and Accessory X-ray Energy Spectrometer (EDX) were used to observe the surface characteristics of fly ash, lime, "Oxygen-enriched" highly reactive absorbent and the spent absorbent. An ion chromatograph (IC) and chemical analysis methods were used to determine the contents of sulfate, sulfite, nitrate and nitrite in the spent absorbents, the results showed that sulfate and nitrite were the main products for desulfurization and denitrification respectively. The mechanism of removing SO2 and NO simultaneously was proposed based on the analysis results of SEM, EDX, IC and the chemical analysis methods. 展开更多
关键词 "Oxygen-enriched" highly reactive absorbent Surface characteristics flue gas circulating fluidized bed Simultaneous desulfurization and denitrification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部