期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Influence of High Temperature Stress on Net Photosynthesis, Dry Matter Partitioning and Rice Grain Yield at Flowering and Grain Filling Stages 被引量:19
1
作者 L Guo-hua WU Yong-feng +3 位作者 BAI Wen-bo MA Bao WANG Chun-yan SONG Ji-qing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期603-609,共7页
Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to dec... Climate change is recognized to increase the frequency and severity of extreme temperature events. At flowering and grain filling stages, risk of high temperature stress (HTS) on rice might increase, and lead to declining grain yields. A regulated cabinet experiment was carried out to investigate effects of high temperature stress on rice growth at flowering and grain- filling stages. Results showed that no obvious decrease pattern in net photosynthesis appeared along with the temperature rising, but the dry matter allocation in leaf, leaf sheath, culm, and panicle all changed. Dry weight of panicle decreased, and ratio of straw to total above ground crop dry weight increased 6-34% from CK, which might have great effects on carbon cycling and green house gas emission. Grain yield decreased significantly across all treatments on average from 15 to 73%. Occurrence of HTS at flowering stage showed more serious influence on grain yield than at grain filling stage. High temperature stress showed negative effects on harvest index. It might be helpful to provide valuable information for crop simulation models to capture the effects of high temperature stress on rice, and evaluate the high temperature risk. 展开更多
关键词 dry matter partitioning grain yield high temperature stress rice growth
下载PDF
Dry Matter Partitioning and Harvest Index Differ in Rice Genotypes with Variable Rates of Phosphorus and Zinc Nutrition 被引量:7
2
作者 Amanullah Inamullah 《Rice science》 SCIE CSCD 2016年第2期78-87,共10页
Phosphorus (P) and zinc (Zn) deficiencies are the major problems that decrease crop productivity under rice-wheat cropping system. Field experiments were conducted to investigate impacts of P (0, 40, 80 and 120 k... Phosphorus (P) and zinc (Zn) deficiencies are the major problems that decrease crop productivity under rice-wheat cropping system. Field experiments were conducted to investigate impacts of P (0, 40, 80 and 120 kg/hm^2) and Zn levels (0, 5, 10 and 15 kg/hm^2) on dry matter (DM) accumulation and partitioning, and harvest index of three rice genotypes 'fine (Bamati-385) vs. coarse (F-Malakand and Pukhraj)' at various growth stages (tiliering, heading and physiological maturity). The experiments were conducted at farmers' field at Batkhela in Northwestern Pakistan for two years in summer 2011 and 2012. The two year pooled data reveled that there were no differences in percent of DM partitioning into leaves and culms with application of different P and Zn levels, and genotypes at tillering. The highest P level (120 kg/hm^2) partitioned more DM into panicles than leaves and culms at heading and physiological maturity stages. The highest Zn level (15 kg/hm^2) accumulated more DM and partitioned more DM into panicles than leaves and culms at heading and physiological maturity stages. The hybrid rice (Pukhraj) produced and partitioned more DM into panicles than F-Malakand and Bamati-385 at heading and physiological maturity stages. Higher DM accumulation and greater amounts of partitioning into panicles at heading and physiological maturity stages was noticed with increase in P and Zn levels, and the increase was significantly higher in the coarse rice genotypes than fine. We concluded that the growing hybrid rice with application of 120 kg/hm^2 P + 15 kg/hm^2 Zn not only increases total DM accumulation and partitioned greater amounts into the reproductive plant parts (panicles) but also results in higher harvest index. 展开更多
关键词 dry matter partitioning growth stage harvest index phosphorus level RICE zinc level
下载PDF
Improved simulation of winter wheat yield in North China Plain by using PRYM-Wheat integrated dry matter distribution coefficient
3
作者 Xuan Li Shaowen Wang +6 位作者 Yifan Chen Danwen Zhang Shanshan Yang Jingwen Wang Jiahua Zhang Yun Bai Sha Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1381-1392,共12页
The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass... The accurate simulation of regional-scale winter wheat yield is important for national food security and the balance of grain supply and demand in China.Presently,most remote sensing process models use the“biomass×harvest index(HI)”method to simulate regional-scale winter wheat yield.However,spatiotemporal differences in HI contribute to inaccuracies in yield simulation at the regional scale.Time-series dry matter partition coefficients(Fr)can dynamically reflect the dry matter partition of winter wheat.In this study,Fr equations were fitted for each organ of winter wheat using site-scale data.These equations were then coupled into a process-based and remote sensingdriven crop yield model for wheat(PRYM-Wheat)to improve the regional simulation of winter wheat yield over the North China Plain(NCP).The improved PRYM-Wheat model integrated with the fitted Fr equations(PRYM-Wheat-Fr)was validated using data obtained from provincial yearbooks.A 3-year(2000-2002)averaged validation showed that PRYM-Wheat-Fr had a higher coefficient of determination(R^(2)=0.55)and lower root mean square error(RMSE=0.94 t ha^(-1))than PRYM-Wheat with a stable HI(abbreviated as PRYM-Wheat-HI),which had R^(2) and RMSE values of 0.30 and 1.62 t ha^(-1),respectively.The PRYM-Wheat-Fr model also performed better than PRYM-Wheat-HI for simulating yield in verification years(2013-2015).In conclusion,the PRYM-Wheat-Fr model exhibited a better accuracy than the original PRYM-Wheat model,making it a useful tool for the simulation of regional winter wheat yield. 展开更多
关键词 dry matter partition remote sensing model winter wheat yield North China Plain
下载PDF
Plant Growth,Yield Components,Economic Responses,and Soil Indigenous K Uptake of Two Cotton Genotypes with Different K-Efficiencies 被引量:6
4
作者 JIANG Cun-cang XIA Ying +2 位作者 CHEN Fang LU Jian-wei WANG Yun-hua 《Agricultural Sciences in China》 CAS CSCD 2011年第5期705-713,共9页
HG103,a high K-efficiency cotton cultivar with high-yield potential,and LG122,a low K-efficiency cotton cultivar with low-yield potential were used to study the genotypic variation on yield,economic responses,and soil... HG103,a high K-efficiency cotton cultivar with high-yield potential,and LG122,a low K-efficiency cotton cultivar with low-yield potential were used to study the genotypic variation on yield,economic responses,and soil indigenous K exploitation for cotton in pot and field conditions in 2006 and 2007.Results indicated that both the cultivars differed significantly in the rate of translocation of dry matter into reproductive organs and the time of running into reproductive stage.Cotton yield and economic parameters of HG103 were much better than LG122.Potassium content in cotton shells reached the highest level at maturity stage for both genotypes.Results also showed that the K content in each plant part of HG103 was lower than that of LG122.The two genotypes showed different efficiencies and abilities on absorbing soil rapidly available K and slowly available K.LG122 showed higher absorption of K rate than HG103 after K fertilization,but on the contrary,HG103 uptake more soil indigenous K than LG122 in no K fertilization treatment.This result indicated that HG103 could tolerant and absorb more soil indigenous K than LG122,under condition of soil K stress.LG122 could grow well and absorb more K nutrient when soil K supply is sufficient.Our results demonstrated that higher K content in plant tissues and higher K uptake by plant may not an exclusive condition for high yield planting with K fertilization.Earlier translocation of more dry matters into reproductive organs is one of the key mechanisms of high K use efficiency in cotton. 展开更多
关键词 cotton (Gossypium hirsutum L.) dry matter partitioning K depletion indigenous K uptake economic parameter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部