期刊文献+
共找到32篇文章
< 1 2 >
每页显示 20 50 100
Machine learning-driven optimization of plasma-catalytic dry reforming of methane
1
作者 Yuxiang Cai Danhua Mei +2 位作者 Yanzhen Chen Annemie Bogaerts Xin Tu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期153-163,共11页
This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimiz... This study investigates the dry reformation of methane(DRM)over Ni/Al_(2)O_(3)catalysts in a dielectric barrier discharge(DBD)non-thermal plasma reactor.A novel hybrid machine learning(ML)model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data.To address the non-linear and complex nature of the plasma-catalytic DRM process,the hybrid ML model integrates three well-established algorithms:regression trees,support vector regression,and artificial neural networks.A genetic algorithm(GA)is then used to optimize the hyperparameters of each algorithm within the hybrid ML model.The ML model achieved excellent agreement with the experimental data,demonstrating its efficacy in accurately predicting and optimizing the DRM process.The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance.We found that the optimal discharge power(20 W),CO_(2)/CH_(4)molar ratio(1.5),and Ni loading(7.8 wt%)resulted in the maximum energy yield at a total flow rate of∼51 mL/min.Furthermore,we investigated the relative significance of each operating parameter on the performance of the plasma-catalytic DRM process.The results show that the total flow rate had the greatest influence on the conversion,with a significance exceeding 35%for each output,while the Ni loading had the least impact on the overall reaction performance.This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets,enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes. 展开更多
关键词 Plasma catalysis Machine learning Process optimization dry reforming of methane Syngas production
下载PDF
Regulating crystal phase of TiO_(2) to enhance catalytic activity of Ni/TiO_(2) for solar-driven dry reforming of methane
2
作者 HE Zhanjun GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 EI CAS CSCD 北大核心 2024年第9期1203-1213,共11页
Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by... Ni/TiO_(2) catalyst is widely employed for photo-driven DRM reaction while the influence of crystal structure of TiO_(2) remains unclear.In this work,the rutile/anatase ratio in supports was successfully controlled by varying the calcination temperature of anatase-TiO_(2).Structural characterizations revealed that a distinct TiO_(x) coating on the Ni nanoparticles(NPs)was evident for Ni/TiO_(2)-700 catalyst due to strong metal-support interaction.It is observed that the TiOx overlayer gradually disappeared as the ratio of rutile/anatase increased,thereby enhancing the exposure of Ni active sites.The exposed Ni sites enhanced visible light absorption and boosted the dissociation capability of CH4,which led to the much elevated catalytic activity for Ni/TiO_(2)-950 in which rutile dominated.Therefore,the catalytic activity of solar-driven DRM reaction was significantly influenced by the rutile/anatase ratio.Ni/TiO_(2)-950,characterized by a predominant rutile phase,exhibited the highest DRM reactivity,with remarkable H_(2) and CO production rates reaching as high as 87.4 and 220.2 mmol/(g·h),respectively.These rates were approximately 257 and 130 times higher,respectively,compared to those obtained on Ni/TiO_(2)-700 with anatase.This study suggests that the optimization of crystal structure of TiO_(2) support can effectively enhance the performance of photothermal DRM reaction. 展开更多
关键词 dry reforming of methane photothermal catalysis crystal phase TiO_(2) metal-support interaction
下载PDF
Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model 被引量:2
3
作者 Yu Wang Qunfeng Zhang +3 位作者 Xinlei Liu Junqi Weng Guanghua Ye Xinggui Zhou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第3期293-303,共11页
Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, w... Dry reforming of methane(DRM) is an attractive technology for utilizing the greenhouse gases(CO_(2) and CH_(4)) to produce syngas. However, the catalyst pellets for DRM are heavily plagued by deactivation by coking, which prevents this technology from commercialization. In this work, a pore network model is developed to probe the catalyst deactivation by coking in a Ni/Al_(2)O_(3) catalyst pellet for DRM. The reaction conditions can significantly change the coking rate and then affect the catalyst deactivation. The catalyst lifetime is higher under lower temperature, pressure, and CH_(4)/CO_(2) molar ratio, but the maximum coke content in a catalyst pellet is independent of these reaction conditions. The catalyst pellet with larger pore diameter, narrower pore size distribution and higher pore connectivity is more robust against catalyst deactivation by coking, as the pores in this pellet are more difficult to be plugged or inaccessible.The maximum coke content is also higher for narrower pore size distribution and higher pore connectivity, as the number of inaccessible pores is lower. Besides, the catalyst pellet radius only slightly affects the coke content, although the diffusion limitation increases with the pellet radius. These results should serve to guide the rational design of robust DRM catalyst pellets against deactivation by coking. 展开更多
关键词 Deactivation by coking dry reforming of methane Pore network model Diffusion limitation Catalyst pellet
下载PDF
The Nature of Active Sites for Plasmon-Mediated Photothermal Catalysis and Heat-Coupled Photocatalysis in Dry Reforming of Methane
4
作者 Jinqiang Zhang Liang Wang +15 位作者 Xiaoli Zhao Lei Shi Haijun Chen Shu Zhang Peng Zhang Shuaijun Wang Laichang Zhang Yinfeng Wang Xiaoyuan Wang Yuezhao Zhu Huayang Zhang Xiaoguang Duan Mingbo Wu Guosheng Shao Shaobin Wang Hongqi Sun 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期381-388,共8页
Solar energy-induced catalysis has been attracting intensive interests and its quantum efficiencies in plasmon-mediated photothermal catalysis(P-photothermal catalysis)and external heat-coupled photocatalysis(E-photot... Solar energy-induced catalysis has been attracting intensive interests and its quantum efficiencies in plasmon-mediated photothermal catalysis(P-photothermal catalysis)and external heat-coupled photocatalysis(E-photothermal catalysis)are ultimately determined by the catalyst structure for photo-induced energetic hot carriers.Herein,different catalysts of supported(TiO_(2)-P25 and Al_(2)O_(3))platinum quantum dots are employed in photo,thermal,and photothermal catalytic dry reforming of methane.Integrated experimental and computational results unveil different active sites(hot zones)on the two catalysts for photo,thermal,and photothermal catalysis.The hot zones of P-photothermal catalysis are identified to be the metal-support interface on Pt/P25 and the Pt surface on Pt/Al_(2)O_(3),respectively.However,a change of the active site to the Pt surface on Pt/P25 is for the first time observed in E-photothermal catalysis(external heating temperature of 700℃).The hot zones contribute to the significant enhancements in photothermal catalytic reactivity against thermocatalysis.This study helps to understand the reaction mechanism of photothermal catalysis to exploit efficient catalysts for solar energy utilization and fossil fuels upgrading. 展开更多
关键词 dry reforming of methane hot zones photothermal catalysis platinum-based catalysts
下载PDF
Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane 被引量:5
5
作者 李伟作 赵忠奎 +1 位作者 焦艳华 王桂茹 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第12期2122-2133,共12页
An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydr... An immature pinecone shaped hierarchically structured zirconia (ZrO2-ipch) and a cobblestone-like zirconia nanoparticulate (ZrO2-cs), both with the monoclinic phase (m-phase), were synthesized by the facile hydrothermal method and used as the support for a Ni catalyst for the dry reforming of methane (DRM) with CO2. ZrO2-ipch is a much better support than ZrO2-cs and the traditional ZrO2 irregular particles made by a simple precipitation method (ZrO2-ip). The supported Ni catalyst on ZrO2-ipch (Ni/ZrO2-ipch) exhibited outstanding catalytic activity and coke-resistant stability compared to the ones on ZrO2-cs (Ni/ZrO2-cs) and ZrO2-ip (Ni/ZrO2-ip). Ni/ZrO2-ip exhibited the worst catalytic performance. The origin of the significantly enhanced catalytic performance was revealed by characterization including XRD, N2 adsorption measurement (BET), TEM, H2-TPR, CO chemisorption, CO2-TPD, XPS and TGA. The superior catalytic activity of Ni/ZrO2-ipch to Ni/ZrO2-cs or Ni/ZrO2-ip was ascribed to a higher Ni dispersion, increased reducibility, enhanced oxygen mo- bility, and more basic sites with a higher strength, which were due to the unique hierarchically structural morphology of the ZrO2-ipch support. Ni/ZrO2-ipch exhibited better stability for the DRM reaction than Ni/ZrO2-ip, which was ascribed to its higher resistance to Ni sintering due to a strengthened metal-support interaction and the confinement effect of the mesopores and coke deposition resistance. The higher coking resistance of Ni/ZrO2-ipch for the DRM reaction in comparison with Ni/ZrOz-ip orignated from the coke-removalabitity of the higher amount of lattice oxygen and more basic sites, confirmed by XPS and CO2-TPD analysis, and the stabilized Ni on the Ni/ZrO2-ipch catalyst by the confinement effect of the mesopores of the hierarchical ZrO2-ipch sup- port. The superior catalytic performance and coking resistance of the Ni/ZrO2-ipch catalyst makes it a promising candidate for synthesis gas production from the DRM reaction. 展开更多
关键词 Ni-based catalystZrO2 supportHierarchical structure Morphology effect dry reforming of methane Synthesis gas Coke resistance
下载PDF
Ni-Co/Mg-Al catalyst derived from hydrotalcite-like compound prepared by plasma for dry reforming of methane 被引量:9
6
作者 Huali Long Yan Xu +4 位作者 Xiaoqing Zhang Shijing Hu Shuyong Shang Yongxiang Yin Xiaoyan Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期733-739,共7页
Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was inves... Ni-Co bimetallic catalysts with different Ni/Co content were derived from cold plasma jet decomposition and reduction of hydrotalcite-like compounds containing Ni,Co,Mg and Al,and their catalytic performance was investigated with dry reforming of methane.Experimental results showed that the hydrotalcite-like precursors could be completely decomposed and partly reduced by cold plasma jet,and the Nicontained catalysts exhibited much higher activity than the catalyst without Ni.Especially,the catalyst with Ni/Co ratio of 8/2 achieved not only the highest conversions of 80.3%and 69.3%for CH4 and CO2,respectively,but also the best stability in 100 h testing.The catalysts were characterized by XRD,XPS,TEM and N2 adsorption techniques,and the results showed that the better performance of the 8Ni2Co bimetallic catalyst was attributed to its higher metal dispersion,smaller metal particle size,as well as the interaction effect between Ni and Co,which were brought by the special catalyst preparation method. 展开更多
关键词 dry reforming of methane Ni-Co bimetallic catalyst cold plasma treatment hydrotalcite-like compound
下载PDF
Tuning combined steam and dry reforming of methane for “metgas”production: A thermodynamic approach and state-of-the-art catalysts 被引量:5
7
作者 Karam Jabbour 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期54-91,I0003,共39页
Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methano... Nowadays,combined steam and dry reforming of methane(CSDRM)is viewed as a new alternative for the production of high-quality syngas(termed as"metgas",H2:CO of 2.0)suitable for subsequent synthesis of methanol,considered as a promising renewable energy vector to substitute fossil fuel resources.Adequate operation conditions(molar feed composition,temperature and pressure)are required for the sole production of"metgas"while achieving high CH4,CO2 and H2O conversion levels.In this work,thermodynamic equilibrium analysis of CSDRM has been performed using Gibbs free energy minimization where;(i)the effect of temperature(range:200-1000℃),(ii)feed composition(stoichiometric ratio as compared to a feed under excess steam or excess carbon dioxide),(iii)pressure(range:1-20 bar)and,(iv)the presence of a gaseous diluent on coke yields,reactivity levels and selectivity towards"metgas"were investigated.Running CSDRM at a temperature of at least 800℃,a pressure of 1 bar and under a feed composition where CO2-H2O/CH4 is around 1.0,are optimum conditions for the theoretical production of"metgas"while minimizing C(S)formation for longer experimental catalytic runs.A second part of this work presents a review of the recent progresses in the design of(principally)Ni-based catalysts along with some mechanistic and kinetic modeling aspects for the targeted CSDRM reaction.As compared to noble metals,their high availability,low cost and good intrinsic activity levels are main reasons for increasing research dedications in understanding deactivation potentials and providing amelioration strategies for further development.Deactivation causes and main orientations towards designing deactivationresistant supported Ni nanoparticles are clearly addressed and analyzed.Reported procedures based on salient catalytic features(i.e.,acidity/basicity character,redox properties,oxygen mobility,metal-support interaction)and recently employed innovative tactics(such as confinement within mesoporous systems,stabilization through core shell structures or on carbide surfaces)are highlighted and their impact on Ni0reactivity and stability are discussed.The final aspect of this review encloses the major directions and trends for improving synthesis/preparation designs of Ni-based catalysts for the sake of upgrading their usage into industrially oriented combined reforming operations. 展开更多
关键词 Combined steam and dry reforming of methane Thermodynamic equilibrium analysis "Metgas"production Nickel-based catalysts Heterogeneous catalysis Structure-activity relationship
下载PDF
Nickel ferrite spinel as catalyst precursor in the dry reforming of methane:Synthesis,characterization and catalytic properties 被引量:5
8
作者 Rafik Benrabaa Hamza Boukhlouf +4 位作者 Axel Lfberg Annick Rubbens Rose-Nelle Vannier Elisabeth Bordes-Richard Akila Barama 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第5期595-604,共10页
Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcin... Dry reforming of methane by CO2 using nickel ferrite as precursor of catalysts was investigated.Nickel ferrite crystalline particles were prepared by coprecipitation of nitrates with NaOH or ammonia followed by calcination,or by hydrothermal synthesis without calcination step.The textural and structural properties were determined by a number of analysis methods,including X-ray diffraction (XRD),Raman spectroscopy and X-ray photoelectron spectroscopy (XPS),among which X-ray diffraction (XRD) was at room and variable temperatures.All synthesized oxides showed the presence of micro or nanoparticles of NiFe2O4 inverse spinel,but Fe2O3 (hematite) was also present when ammonia was used for coprecipitation.The reducibility by hydrogen was studied by temperature-programmed reduction (TPR) and in situ XRD,which showed the influence of the preparation method.The surface area (BET),particle size (Rietveld refinement),as well as surface Ni/Fe atomic ratio (XPS) and the behavior upon reduction varied according to the synthesis method.The catalytic reactivity was investigated using isopropanol decomposition to determine the acid/base properties.The catalytic performance of methane reforming with CO2 was measured with and without the pre-treatment of catalysts under H2 in 650-800 C range.The catalytic conversions of methane and CO2 were quite low but they increased when the catalysts were pre-reduced.A significant contribution of reverse water gas shift reaction accounted for the low values of H2 /CO ratio.No coking was observed as shown by the reoxidation step performed after the catalytic reactions.The possible formation of nickel-iron alloy observed during the study of reducibility by hydrogen was invoked to account for the catalytic behavior. 展开更多
关键词 dry reforming of methane NiFe2O4 spinel hydrothermal synthesis coprecipitation isopropanol decomposition
下载PDF
Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al_2O_3 被引量:5
9
作者 Amin Aziznia Hamid Reza Bozorgzadeh +2 位作者 Naser Seyed-Matin Morteza Baghalha Ali Mohamadalizadeh 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第4期466-475,共10页
In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature ra... In the current study, the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated. The study includes both purely catalytic operation in the temperature range of 923-1023 K, and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure. The effect of feed flow rate, discharge power and Ni/γ-Al2O3 catalysts are studied. When CH4/CO2 ratio in the feed is 1/2, the syngas of low Ha/CO ratio at about 0.56 is obtained, which is a potential feedstock for synthesis of liquid hydrocarbons. Although Ni catalyst is only active above 573 K, presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide. When Ni catalysts are used in the plasma reaction, H2/CO ratios in the products are slightly modified, selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed. 展开更多
关键词 dry reforming of methane synthesis gas hybrid catalyst plasma Ni/γ-Al2O3 discharge power
下载PDF
Photocatalytic dry reforming of methane by rhodium supported monoclinic TiO_(2)-B nanobelts 被引量:2
10
作者 Masaru Kushida Akira Yamaguchi Masahiro Miyauchi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期562-571,I0015,共11页
The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have ... The conversion of methane and carbon dioxide into syngas(dry reforming of methane;DRM)has attracted attention owing to the potential to reuse greenhouse gases.Titanium dioxide(TiO_(2))-based photocatalysts,which have been widely commercialized owing to their high efficiency,non-toxicity,and low cost,are strongly desired in DRM.Here,we report a monoclinic-phase TiO_(2)-B nanobelts-supported rhodium(Rh/TiO_(2)-B nanobelts)catalyst that efficiently promotes DRM under ultraviolet light irradiation at low temperatures.Photogenerated holes in the TiO_(2)-B nanobelts were used to oxidize methane,while the electrons were trapped in rhodium to reduce carbon dioxide.Rh/TiO_(2)-B nanobelts exhibited considerably higher durability and activity than Rh-loaded conventional TiO_(2)(anatase and rutile),owing to the lattice and/or surface oxygen reactivity in TiO_(2)-B nanobelts,which was suggested by X-ray photoelectron spectroscopy measurements and photocatalytic performance tests under an atmosphere of methane alone.This study paves the path for the effective utilization of methane by constructing active TiO_(2)-based nanometal photocatalysts. 展开更多
关键词 Photocatalysis dry reforming of methane Greenhouse gas conversion Gas-phase reaction Titanium dioxide TiO_(2)-B
下载PDF
Low-temperature dry reforming of methane tuned by chemical speciations of active sites on the SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce catalysts 被引量:2
11
作者 Yimin Zhang Ruiming Zeng +4 位作者 Yun Zu Linhua Zhu Yi Mei Yongming Luo Dedong He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第8期76-90,共15页
The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical... The cognition of active sites in the Ni-based catalysts plays a vital role and remains a huge challenge in improving catalytic performance of low temperature CO_(2) dry reforming of methane(LTDRM).In this work,typical catalysts of SiO_(2) and γ-Al_(2)O_(3) supported Ni and Ni-Ce were designed and prepared.Importantly,the difference in the chemical speciations of active sites on the Ni-based catalysts is revealed by advanced characterizations and further estimates respective catalytic performance for LTDRM.Results show that larger[Ni0-]particles mixed with[Ni-O-Sin])species on the Ni/SiO_(2)(R)make CH_(4) excessive decomposition,leading to poor activity and stability.Once the Ce species is doped,however,superior activity(59.0%CH_(4) and 59.8%CO_(2) conversions),stability and high H_(2)/CO ratio(0.96)at 600℃ can be achieved on the Ni-Ce/SiO_(2)(R),in comparison with other catalysts and even reported studies.The improved performance can be ascribed to the formation of integral([Ni0_(n))]-[CeⅢ-□-CeⅢ])species on the Ni-Ce/SiO_(2)(R)catalyst,containing highly dispersed[Ni]particles and rich oxygen vacancies,which can synergistically establish a new stable balance between gasification of carbon species and CO_(2) dissocia-tion.With respect to Ni-Ce/γ-Al_(2)O_(3)(R),the Ni and Ce precursors are easily captured by extra-framework Al_(n)-OH groups and further form stable isolated([Ni0_(n))]-[Ni-O-Al_(n)])and[CeⅢ-O-Al_(n)]species.In such a case,both of them preferentially accelerate CO_(2) adsorption and dissociation,causing more car-bon deposition due to the disproportionation of superfuous CO product.This deep distinguishment of chemical speciations of active sites can guide us to further develop new efficient Ni-based catalysts for LTDRM in the future. 展开更多
关键词 CO_(2)dry reforming of methane LOW-TEMPERATURE Ni-based catalysts Chemical speciations reforming reaction mechanisms
下载PDF
Utilizing bimetallic catalysts to mitigate coke formation in dry reforming of methane 被引量:1
12
作者 Jaylin Sasson Bitters Tina He +3 位作者 Elizabeth Nestler Sanjaya D.Senanayake Jingguang G.Chen Cheng Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期124-142,共19页
Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of... Dry reforming of methane(DRM) involves the conversion of carbon dioxide(CO_(2)) and methane(CH_(4)) into syngas(a mixture of hydrogen, H_(2), and carbon monoxide, CO), which can then be used to produce a wide range of products by means of Fischer–Tropsch synthesis. DRM has gained much attention as a means of mitigating damage from anthropogenic greenhouse gas(GHGs) emissions to the environment and instead utilizing these gases as precursors for value-added chemicals or to synthesize sustainable fuels and chemicals. Carbon deposition or coke formation, a primary cause of catalyst deactivation, has proven to be a major challenge in the development of DRM catalysts. The use of nickel-and cobalt-based catalysts has been extensively explored for DRM for their high activity and low cost but suffer from poor stability due to coke formation that has hindered their commercialization. Numerous articles have reviewed the various aspects of catalyst deactivation and strategies for mitigation, but few has focused on the benefit of bimetallic catalysts for mitigating coke formation. Bimetallic catalysts, often improve the catalytic stability over their monometallic counterparts due to synergistic effects resulting from two metal-tometal interactions. This review will cover DRM literature for various bimetallic catalyst systems, including the effect of supports and promoters, on the mitigation of carbonaceous deactivation. 展开更多
关键词 dry reforming of methane Carbon dioxide Bimetallic catalysts Coke formation Catalyst stability
下载PDF
Nickel-based cerium zirconate inorganic complex structures for CO_(2)valorisation via dry reforming of methane
13
作者 Juan Luis Martín-Espejo Loukia-Pantzechroula Merkouri +3 位作者 Jesús Gándara-Loe José Antonio Odriozola Tomas Ramirez Reina Laura Pastor-Pérez 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第6期12-23,共12页
The increasing anthropogenic emissions of greenhouse gases(GHG)is encouraging extensive research in CO_(2)utilisation.Dry reforming of methane(DRM)depicts a viable strategy to convert both CO_(2)and CH4into syngas,a w... The increasing anthropogenic emissions of greenhouse gases(GHG)is encouraging extensive research in CO_(2)utilisation.Dry reforming of methane(DRM)depicts a viable strategy to convert both CO_(2)and CH4into syngas,a worthwhile chemical intermediate.Among the different active phases for DRM,the use of nickel as catalyst is economically favourable,but typically deactivates due to sintering and carbon deposition.The stabilisation of Ni at different loadings in cerium zirconate inorganic complex structures is investigated in this work as strategy to develop robust Ni-based DRM catalysts.XRD and TPR-H2analyses confirmed the existence of different phases according to the Ni loading in these materials.Besides,superficial Ni is observed as well as the existence of a CeNiO_(3)perovskite structure.The catalytic activity was tested,proving that 10 wt.%Ni loading is the optimum which maximises conversion.This catalyst was also tested in long-term stability experiments at 600and 800℃in order to study the potential deactivation issues at two different temperatures.At 600℃,carbon formation is the main cause of catalytic deactivation,whereas a robust stability is shown at 800℃,observing no sintering of the active phase evidencing the success of this strategy rendering a new family of economically appealing CO_(2)and biogas mixtures upgrading catalysts. 展开更多
关键词 CO_(2)conversion dry reforming of methane Nickel catalysts PYROCHLORE Cerium zirconate
原文传递
Dry-gel synthesis of hierarchical Ni-La@S-1 catalysts with stabilized Ni-La bimetals nanoparticles for dry reforming of methane
14
作者 Jin Lv Youhe Wang +11 位作者 Junjie Liu Zhichao Zhang Yu Ma Ziyi Zhou Yuqing Ouyang Jie Zhong Xiang Rao Hongman Sun Xiaoyun Xiong Qingxun Hu Guofeng Zhao Zifeng Yan 《Nano Research》 SCIE EI CSCD 2024年第11期10216-10226,共11页
Dry reforming of methane (DRM) can simultaneously convert two critical greenhouse gases CH4 and CO_(2) into high-value syngas. However, the catalyst deactivation caused by sintering and carbon deposition of Ni-based c... Dry reforming of methane (DRM) can simultaneously convert two critical greenhouse gases CH4 and CO_(2) into high-value syngas. However, the catalyst deactivation caused by sintering and carbon deposition of Ni-based catalysts at high temperature is a significant problem to be solved for DRM industrialization. Herein, we represent a hierarchical Ni-La@S-1 catalyst for DRM reaction, showing high anti-sintering/coke capacity to improve DRM stability. The La and Ni nitrates were first grinded into the pores of SBA-15 followed by N2-treatment;the sample was then recrystallized by a unique template assisted-uniformly dispersed strategy to obtain the hierarchical Ni-La@S-1 catalyst. This strategy achieves uniform encapsulation of stabilized Ni-La bimetallic nanoparticles in S-1 with high loading, exhibiting high DRM activity and stability at 700 °C and 36,000 mL·g^(−1)·h^(−1). Moreover, La addition promoted CO_(2) to form bidentate carbonate, a critical intermediate in DRM, which greatly ameliorated carbon deposition in Ni catalysts. This work offers promising clue for tailoring the industrial DRM catalysts. 展开更多
关键词 Ni-La bimetals encapsulation dry gel recrystallization dry reforming of methane stability additive metal
原文传递
Unravelling the Anomalous Coking Resistance over Boron Nitride-Supported Ni Catalysts for Dry Reforming of Methane 被引量:1
15
作者 Jiang Deng Min Gao +4 位作者 Jun-ya Hasegawa Xiaoyu Zhang Aiyong Wang Aling Chen Dengsong Zhang 《CCS Chemistry》 CSCD 2023年第9期2111-2124,共14页
Metal oxides have been used as the supports for heterogeneous catalysis formany years,but they still suffer from coking in some high-temperature applications.The main reasons for coking are the uncontrollable dissocia... Metal oxides have been used as the supports for heterogeneous catalysis formany years,but they still suffer from coking in some high-temperature applications.The main reasons for coking are the uncontrollable dissociation of C-H and the overbalance between carbon deposition and removal.Herein,we find a boron nitride(BN)-immobilized Ni catalyst shows unprecedented coking resistance in dry reforming of methane via the incomplete decomposition of methane.Unlike the Ni-based catalysts supported by traditional metal oxides,BN-supported Ni accelerates the first C-H dissociation while inhibiting the breaking of the final C-H bond;hence,the suppression of the complete decomposition of methane thoroughly addresses the coking issue.This work reveals the fundamental reason for the coking resistance over BN-supported Ni catalysts is selective activation of the C-H bond,which can provide an inspiring idea for other applications. 展开更多
关键词 heterogenous catalysis boron nitrides dry reforming of methane coking resistance methane conversion
原文传递
Development and Regeneration Performance of LaNiO_(3)Perovskite Oxides for Dry Reforming of Methane
16
作者 CAO Dingshan LUO Cong +5 位作者 CAI Guoqiu LUO Tong WU Fan LI Xiaoshan ZHENG Ying ZHANG Liqi 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第5期1935-1944,共10页
Dry reforming of methane(DRM)process has attracted much attention in recent years for the direct conversion of CH_4 and CO_(2)into high-value-added syngas.The key for DRM was to develop catalysts with high activity an... Dry reforming of methane(DRM)process has attracted much attention in recent years for the direct conversion of CH_4 and CO_(2)into high-value-added syngas.The key for DRM was to develop catalysts with high activity and stability.In this study,LaNiO_(3)was prepared by the sol-gel,co-precipitation,and hydro-thermal methods to explore the influence of preparation methods on the catalyst structure and DRM reaction performance.The regeneration properties of the used LaNiO_(3)catalysts were also investigated under steam,CO_(2),and air atmospheres,respectively.The results showed that LaNiO_(3)prepared by sol-gel method showed the best DRM performance at 750℃.The DRM performance of the samples prepared by hydro-thermal method was inhibited at 750℃due to the residual of Na^(+)ions during the preparation process.The regeneration tests showed that none of the three atmospheres could restore LaNiO_(3)perovskite phase in the samples,but they could eliminate the carbon deposits in the samples during the DRM reaction,so the samples could maintain stable DRM performance at different cycling stages. 展开更多
关键词 dry reforming of methane PEROVSKITE LaNiO_(3) CO_(2)utilization thermal conversion
原文传递
Effect of Partial Substitution of Ni by Cu in LaNiO_3 Perovskite Catalyst for Dry Methane Reforming 被引量:5
17
作者 G.R.MORADI F.KHOSRAVIAN M.RAHMANZADEH 《催化学报》 SCIE CAS CSCD 北大核心 2012年第5期797-801,共5页
A series of ternary perovskite type oxides LaNi1-xCuxO3(x = 0.2,0.4,0.6,0.8,and 1.0) were synthesized via the sol-gel method in propionic acid.Partial substitution of Ni by Cu showed higher activities and selectivitie... A series of ternary perovskite type oxides LaNi1-xCuxO3(x = 0.2,0.4,0.6,0.8,and 1.0) were synthesized via the sol-gel method in propionic acid.Partial substitution of Ni by Cu showed higher activities and selectivities towards syngas products.LaNi0.8Cu0.2O3 was the most active toward the CH4 and CO2 conversions,and was selective for syngas products.Temperature-programmed reduction results showed that the addition of Cu facilitates the reduction of Ni3+ to Ni0,which is the main reason for the higher performance of this catalyst. 展开更多
关键词 dry reforming of methane PEROVSKITE lanthanun NICKEL sol-gel method
下载PDF
Highly dispersed Ni/MgO-mSiO_(2)catalysts with excellent activity and stability for dry reforming of methane 被引量:2
18
作者 Fang Zeng Juan Zhang +2 位作者 Run Xu Rongjun Zhang Jianping Ge 《Nano Research》 SCIE EI CSCD 2022年第6期5004-5013,共10页
Highly dispersed Ni catalyst and alkaline promoters supported by mesoporous SiO_(2)nanospheres were synthesized and applied as an active and stable catalyst for dry reforming of methane(DRM).The as-prepared Ni/MgO-mSi... Highly dispersed Ni catalyst and alkaline promoters supported by mesoporous SiO_(2)nanospheres were synthesized and applied as an active and stable catalyst for dry reforming of methane(DRM).The as-prepared Ni/MgO-mSiO_(2)catalyst showed stable conversions of CH4 and CO_(2)around 82%and 85%in 120 h of DRM reaction,which was superior in performance compared to similar catalysts in literatures.Based on the transmission electron microscope(TEM)images,energy-dispersive spectroscopy(EDS),CO-pulse adsorption,temperature programmed reduction of the oxidized catalysts by hydrogen(H_(2)-TPR),X-ray photoelectron spectroscopy(XPS),temperature-programmed desorption of CO_(2)(CO_(2)-TPD),and thermal gravitational analysis(TGA),the promotion effect of MgO on the Ni catalyst was systematically studied.The introduction of Mg^(2+)in synthesis enhanced the interaction between Ni^(2+)and mSiO_(2),which led to a high dispersion of active centers and a strong“metal–support”interactions to inhibit the sintering and deactivation of Ni at reaction temperatures.On the other hand,Ni and MgO nanoparticles formed adjacently on mSiO_(2),where the“Ni-MgO”interface not only improved the Ni0 distribution and promoted the cracking of CH_(4)but also promoted the activation of CO_(2)and the elimination of carbon deposits.A high and stable conversion of CH4 and CO_(2)were then achieved through the synergistic effect of Ni catalyst,MgO promoter,and mSiO_(2)support. 展开更多
关键词 Ni-based catalyst dry reforming of methane mesoporous SiO_(2) MGO ALKALINE
原文传递
Dry reforming of methane on doped Ni nanoparticles:Featureassisted optimizations and ranking of doping metals for direct activations of CH_(4) and CO_(2) 被引量:2
19
作者 Shiru Lin Jean-Baptiste Tristan +1 位作者 Yang Wang Junwei Lucas Bao 《Nano Research》 SCIE EI CSCD 2022年第10期9670-9682,共13页
As a vital energy resource and raw material for many industrial products,syngas(CO and H_(2))is of great significance.Dry reforming of methane(DRM)is an important approach to producing syngas(with a hydrogen-to-carbon... As a vital energy resource and raw material for many industrial products,syngas(CO and H_(2))is of great significance.Dry reforming of methane(DRM)is an important approach to producing syngas(with a hydrogen-to-carbon-monoxide ratio of 1:1 in principle)from methane and carbon dioxide,with a lower operational cost as compared to other reforming techniques.However,many pure metallic catalysts used in DRM face deactivation issues due to coke formation or sintering of the metal particles.A systematic search for highly efficient metallic catalysts,which reduce the reaction barriers for the rate-determining steps and resist carbon deposition,is urgently needed.Nickel is a typical low-cost transition metal for activating the C–H bond in methane.In this work,we applied a two-step workflow to search for nickel-based bimetallic catalysts with doping metals M(M-Ni)by combining density functional theory(DFT)calculations and machine learning(ML).We focus on the two critical steps in DRM—CH_(4) and CO_(2) direct activations.We used DFT and slab models for the Ni(111)facet to explore the relevant reaction pathways and constructed a data set containing structural and energetic information for representative M-Ni systems.We used this dataset to train ML models with chemical-knowledge-based features and predicted CH_(4) and CO_(2) dissociation energies and barriers,which revealed the composition–activity relationships of the bimetallic catalysts.We also used these models to rank the predicted catalytic performance of candidate systems to demonstrate the applicability of ML for catalyst screening.We emphasized that ML ranking models would be more valuable than regression models in high-throughput screenings.Finally,we used our trained model to screen 12 unexplored M-Ni systems and showed that the DFT-computed energies and barriers are very close to the ML-predicted values for top candidates,validating the robustness of the trained model. 展开更多
关键词 Ni-based bimetallic catalysts dry reforming of methane syngas production CH_(4)and CO_(2)direct activations ranking model
原文传递
Engineering the Interface and Interaction Structure on Highly Coke-Resistant Ni/CeO_(2)-Al_(2)O_(3) Catalyst for Dry Reforming of Methane 被引量:1
20
作者 Sha Li Xin Wang +3 位作者 Min Cao Jingjun Lu Li Qiu Xiaoliang Yan 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2022年第12期7-14,共8页
Designing and tailoring metal-support interaction in Ni-based catalysts with plentiful interfacial sites is of significant interest for achieving a targeted catalytic performance in dry reforming of methane (DRM),but ... Designing and tailoring metal-support interaction in Ni-based catalysts with plentiful interfacial sites is of significant interest for achieving a targeted catalytic performance in dry reforming of methane (DRM),but remains as a challenging task.In this work,Ni/Al_(2)O_(3)and Ni/CeO_(2)-Al_(2)O_(3)catalysts with the same strong metal-support interaction(SMSI) but distinct interface structure are developed by an improved evaporation-induced self-assembly method using pseudobohemite gel as aluminum source.Ni/CeO_(2)-Al_(2)O_(3)exhibits superior catalytic activity and stability in DRM in comparison with Ni/Al_(2)O_(3).The highest CH4and CO_(2)conversion reaches at 71.4%and 82.1%for Ni/CeO_(2)-Al_(2)O_(3),which are higher than that of 64.3% and 75.6% for Ni/Al_(2)O_(3)at 700℃.The SMSI effect in Ni/CeO_(2)-Al_(2)O_(3)provides more active interfacial sites with less coke deposition,and promotes the generation of active formate species which are the key intermediates for DRM.The findings of the present work could possibly pave the way for fabricating catalysts with SMSI strategy for efficient heterogeneous catalysis. 展开更多
关键词 metal-support interaction INTERFACE Ni catalysts CeO_(2) dry reforming of methane
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部