期刊文献+
共找到505篇文章
< 1 2 26 >
每页显示 20 50 100
Dry environment on the expression of lacrimal gland S100A9,Anxa1,and Clu in rats via proteomics
1
作者 Yi-Lin Sun A-Yuan Cui +2 位作者 Li-Xin Wang Wang-Wang Zhang Hong Shi 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第3期435-443,共9页
●AIM:To investigate the underlying mechanism of dry environment(autumn dryness)affecting the lacrimal glands in rats.●METHODS:Twenty Sprague-Dawley rats were randomly divided into two groups.The rats were fed in spe... ●AIM:To investigate the underlying mechanism of dry environment(autumn dryness)affecting the lacrimal glands in rats.●METHODS:Twenty Sprague-Dawley rats were randomly divided into two groups.The rats were fed in specific pathogen free environment as the control group(n=10),and the rats fed in dry environment as the dryness group(n=10).After 24d,lacrimal glands were collected from the rats.The tissues morphology was observed by hematoxylineosin(HE)staining.Tandem mass tags(TMT)quantitative proteomics analysis technology was used to screen the differential expressed proteins of lacrimal glands between the two groups,then bioinformatics analysis was performed.Further,the immunohistochemical(IHC)method was used to verify the target proteins.●RESULTS:In dryness group,the lacrimal glands lobule atrophied,the glandular cavities enlarged,the sparse nuclear distribution and scattered inflammatory infiltration between the acinus were observed.The proteomics exhibited that a total of 195 up-regulated and 236 downregulated differential expressed proteins screened from the lacrimal glands of rats.It was indicated that the biological processes(BP)of differential expressed proteins mainly included cell processes and single BP.The cellular compositions of differential expressed proteins mainly located in cells,organelles.The molecular functions of differential expressed proteins mainly included binding,catalytic activity.Moreover,the Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis showed that the differential expressed proteins mainly involved lysosome,complement and coagulation cascade,and ribosome pathway.The IHC result verified that the up-regulated expression proteins of Protein S100A9(S100A9),Annexin A1(Anxa1),and Clusterin(Clu)in lacrimal glands of rats in dryness group were higher than control group.●CONCLUSION:The up-regulated expression proteins of S100A9,Anxa1,and Clu may be the potential mechanisms of dry eye symptoms caused by dry environment.This study provides clues of dry environments causing eye-related diseases for further studies. 展开更多
关键词 dry eye lacrimal gland S100A9 Clu Anxa1 environment RATS
下载PDF
Asymmetric Drying and Wetting Trends in Eastern and Western China 被引量:1
2
作者 Wen WU Fei JI +1 位作者 Shujuan HU Yongli HE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第2期221-232,共12页
As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous ... As an important factor that directly affects agricultural production, the social economy, and policy implementation,observed changes in dry/wet conditions have become a matter of widespread concern. However, previous research has mainly focused on the long-term linear changes of dry/wet conditions, while the detection and evolution of the non-linear trends related to dry/wet changes have received less attention. The non-linear trends of the annual aridity index, obtained by the Ensemble Empirical Mode Decomposition(EEMD) method, reveal that changes in dry/wet conditions in China are asymmetric and can be characterized by contrasting features in both time and space in China. Spatially, most areas in western China have experienced transitions from drying to wetting, while opposite changes have occurred in most areas of eastern China. Temporally, the transitions occurred earlier in western China compared to eastern China. Research into the asymmetric spatial characteristics of dry/wet conditions compensates for the inadequacies of previous studies, which focused solely on temporal evolution;at the same time, it remedies the inadequacies of traditional research on linear trends over centennial timescales. Analyzing the non-linear trend also provides for a more comprehensive understanding of the drying/wetting changes in China. 展开更多
关键词 aridity index EEMD dry/wet conditions asymmetric evolution
下载PDF
Decadal Changes in Dry and Wet Heatwaves in Eastern China:Spatial Patterns and Risk Assessment
3
作者 Yue ZHANG Wen ZHOU Ruhua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第10期2011-2026,共16页
Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in easte... Under global warming,understanding the long-term variation in different types of heatwaves is vital for China’s preparedness against escalating heat stress.This study investigates dry and wet heatwave shifts in eastern China over recent decades.Spatial trend analysis displays pronounced warming in inland midlatitudes and the Yangtze River Valley,with increased humidity in coastal regions.EOF results indicate intensifying dry heatwaves in northern China,while the Yangtze River Valley sees more frequent dry heatwaves.On the other hand,Indochina and regions north of 25°N also experience intensified wet heatwaves,corresponding to regional humidity increases.Composite analysis is conducted based on different situations:strong,frequent dry or wet heatwaves.Strong dry heatwaves are influenced by anticyclonic circulations over northern China,accompanied by warming SST anomalies around the coastal midlatitudes of the western North Pacific(WNP).Frequent dry heatwaves are related to strong subsidence along with a strengthened subtropical high over the WNP.Strong and frequent wet heatwaves show an intensified Okhotsk high at higher latitudes in the lower troposphere,and a negative circumglobal teleconnection wave train pattern in the upper troposphere.Decaying El Niño SST patterns are observed in two kinds of wet heatwave and frequent dry heatwave years.Risk analysis indicates that El Niño events heighten the likelihood of these heatwaves in regions most at risk.As global warming continues,adapting and implementing mitigation strategies toward extreme heatwaves becomes crucial,especially for the aforementioned regions under significant heat stress. 展开更多
关键词 decadal changes dry heatwave wet heatwave eastern China
下载PDF
Wetting alternating with partial drying during grain filling increases lysine biosynthesis in inferior rice grain
4
作者 Yi Jiang Wenli Tao +2 位作者 Weiyang Zhang Zhiqin Wang Jianchang Yang 《The Crop Journal》 SCIE CSCD 2024年第1期262-270,共9页
Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breedin... Lysine content is a criterion of the nutritional quality of rice.Understanding the process of lysine biosynthesis in early-flowering superior grain(SG)and late-flowering inferior grain(IG)of rice would advance breeding and cultivation to improve nutritional quality.However,little information is available on differences in lysine anabolism between SG and IG and the underlying mechanism,and whether and how irrigation regimes affect lysine anabolism in these grains.A japonica rice cultivar was grown in the field and two irrigation regimes,continuous flooding(CF)and wetting alternating with partial drying(WAPD),were imposed from heading to the mature stage.Lysine content and activities of key enzymes of lysine biosynthesis,and levels of brassinosteroids(BRs)were lower in the IG than in the SG at the early grainfilling stage but higher at middle and late grain-filling stages.WAPD increased activities of these key enzymes,BR levels,and contents of lysine and total amino acids in IG,but not SG relative to CF.Application of 2,4-epibrassinolide to rice panicles in CF during early grain filling reproduced the effects of WAPD,but neither treatment altered the activities of enzymes responsible for lysine catabolism in either SG or IG.WAPD and elevated BR levels during grain filling increased lysine biosynthesis in IG.Improvement in lysine biosynthesis in rice should focus on IG. 展开更多
关键词 BRASSINOSTEROIDS Inferior grain Lysine biosynthesis Rice wetting alternating with partial drying
下载PDF
Characteristics of Dry and Wet Climate in Shandong Province Based on Standardized Precipitation Index
5
作者 Ningxin ZHANG Fengling ZENG Fang LI 《Meteorological and Environmental Research》 2024年第3期6-15,共10页
Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morl... Based on the monthly precipitation data of 116 meteorological stations in Shandong Province during 1970-2021,standardized precipitation index(SPI)was calculated,and the methods of linear fitting,mutation test and Morlet wavelet analysis were used to analyze the change trend and temporal and spatial distribution characteristics of SPI index in the past 52 years.The results show that there were more normal years in Shandong Province,and the frequency reached 38.46%.There was severe drought in the 1980s and more wet years after 2003.SPI index showed an upward trend in spring,summer and winter but a weak arid trend in autumn.In addition,intense dry weather was more frequent in summer.Spatially,the climate was normal or humid in most areas of Shandong Province.The regions with more wet years were located in the central and northeast Shandong and the peninsula,while the climate was normal in the southwest and north of Shandong.The areas with more dry years were mainly located in the northwest of Shandong Province.There was mainly local and global drought in Shandong Province,and the arid area showed a decreasing trend.In the past 52 years,Shandong Province experienced quasi-4 times of alternation between dry and wet climate.The long period of 21 a was the first main period,and the climate would be still wet in Shandong Province in the future.In terms of mutation,the climate in Shandong Province became humid after 2003,and 2003 was the mutation point.After the abrupt change,the climate changed from gradually drying to wetting. 展开更多
关键词 Standardized precipitation index Shandong Province dry and wet climate characteristics Trend analysis
下载PDF
Pitting and galvanic corrosion behavior of stainless steel with weld in wet-dry environment containing Cl^- 被引量:3
6
作者 Cui Lin Xiaogang Li Chaofang Dong 《Journal of University of Science and Technology Beijing》 CSCD 2007年第6期517-522,共6页
Accelerated corrosion test of stainless steel with weld was carried out to investigate the corrosion behavior under the wetdry cyclic condition in the atmosphere containing Cl^-. In the surface morphology, corrosion p... Accelerated corrosion test of stainless steel with weld was carried out to investigate the corrosion behavior under the wetdry cyclic condition in the atmosphere containing Cl^-. In the surface morphology, corrosion products were analyzed by metallographic observation, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results show that the damage to stainless steel with weld in the atmosphere containing Cl^- is due to localized corrosion, especially pitting and galvanic corrosion, Weld acts as the anode, whereas matrix acts as the cathode in the corrosion process. The pitting corrosion, including the nucleation and growth of a stable pit, is promoted by the presence of wet-dry cycles, especially during the drying stage. Pits centralizing in weld are found to be grouped together like colonies, with a number of smaller pits surrounding a larger pit. The composition of the corrosion products is Fe2O3, Cr2O3, Fe3O4, NiCrO4, etc. 展开更多
关键词 stainless steel WELD wet-dry environment chlorion
下载PDF
Hydraulic and volume change behaviors of compacted highly expansive soil under cyclic wetting and drying 被引量:4
7
作者 Mohamed Farid Abbas Abdullah Ali Shaker Mosleh A.Al-Shamrani 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期486-499,共14页
The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and bounda... The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions. 展开更多
关键词 Expansive soils Hydraulic conductivity Volume change potential Cyclic wetting and drying(CWD) Swell pressure
下载PDF
Investigation on microstructure evolution of clayey soils: A review focusing on wetting/drying process 被引量:3
8
作者 Chao-Sheng Tang Qing Cheng +2 位作者 Xuepeng Gong Bin Shi Hilary I.Inyang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期269-284,共16页
Variability in moisture content is a common condition in natural soils.It influences soil properties significantly.A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of ... Variability in moisture content is a common condition in natural soils.It influences soil properties significantly.A comprehensive understanding of the evolution of soil microstructure in wetting/drying process is of great significance for interpretation of soil macro hydro-mechanical behavior.In this review paper,methods that are commonly used to study soil microstructure are summarized.Among them are scanning electron microscope(SEM),environmental SEM(ESEM),mercury intrusion porosimetry(MIP)and computed tomography(CT)technology.Moreover,progress in research on the soil microstructure evolution during drying,wetting and wetting/drying cycles is summarized based on reviews of a large body of research papers published in the past several decades.Soils compacted on the wet side of op-timum water content generally have a matrix-type structure with a monomodal pore size distribution(PSD),whereas soils compacted on the dry side of optimum water content display an aggregate structure that exhibits bimodal PSD.During drying,decrease in soil volume is mainly caused by the shrinkage of inter-aggregate pores.During wetting,both the intra-and inter-aggregate pores increase gradually in number and sizes.Changes in the characteristics of the soil pore structure significantly depend on stress state as the soil is subjected to wetting.During wetting/drying cycles,soil structural change is not completely reversible,and the generated cumulative swelling/shrinkage deformation mainly derives from macro-pores.Furthermore,based on this analysis and identified research needs,some important areas of research focus are proposed for future work.These areas include innovative methods of sample preparation,new observation techniques,fast quantitative analysis of soil structure,integration of microstructural parameters into macro-mechanical models,and soil microstructure evolution charac-teristics under multi-field coupled conditions. 展开更多
关键词 Soil microstructure Pore size distribution(PSD) wetting/drying cycle SUCTION Volume change
下载PDF
Diversity of Arbuscular Mycorrhizal Fungi Associated with Six Rice Cultivars in Italian Agricultural Ecosystem Managed with Alternate Wetting and Drying 被引量:1
9
作者 Veronica VOLPE Franco MAGURNO +2 位作者 Paola BONFANTE Stefano GHIGNONE Erica LUMINI 《Rice science》 SCIE CSCD 2023年第4期348-358,I0028-I0030,共14页
Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was propo... Alternate wetting and drying(AWD)system,in which water has been reduced by approximately 35%with an increased occurrence of beneficial arbuscular mycorrhizal(AM)symbiosis and no negative impact on rice yield,was proposed to utilize water and nutrients more sustainable.In this study,we selected six rice cultivars(Centauro,Loto,Selenio,Vialone nano,JSendra and Puntal)grown under AWD conditions,and investigated their responsiveness to AM colonization and how they select diverse AM taxa.In order to investigate root-associated AM fungus communities,molecular cloning-Sanger sequencing on small subunit rDNA data were obtained from five out of the six rice cultivars and compared with Next Generation Sequencing(NGS)data,which were previously obtained in Vialone nano.The results showed that all the cultivars were responsive to AM colonization with the development of AM symbiotic structures,even if with differences in the colonization and arbuscule abundance in the root systems.We identified 16 virtual taxa(VT)in the soil compartment and 7 VT in the root apparatus.We emphasized that the NGS analysis gives additional value to the results thanks to a more in-depth reading of the less represented AM fungus taxa. 展开更多
关键词 alternate wetting and drying system arbuscular mycorrhizal fungi rice molecular diversity virtual taxa
下载PDF
Thermal–moisture dynamics and thermal stability of active layer in response to wet/dry conditions in the central region of the Qinghai–Tibet Plateau,China 被引量:1
10
作者 MingLi Zhang ZhiXiong Zhou +3 位作者 Zhi Wen FengXi Zhou Zhao Ma BingBing Lei 《Research in Cold and Arid Regions》 CSCD 2023年第1期27-38,共12页
The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy bala... The amount of rainfall varies unevenly in different regions of the Qinghai-Tibet Plateau, with some regions becoming wetter and others drier. Precipitation has an important impact on the process of surface energy balance and the energy-water transfer within soils. To clarify the thermal-moisture dynamics and thermal stability of the active layer in permafrost regions under wet/dry conditions, the verified water-vapour-heat coupling model was used. Changes in the surface energy balance, energy-water transfer within the soil, and thickness of the active layer were quantitatively analyzed. The results demonstrate that rainfall changes significantly affect the Bowen ratio, which in turn affects surface energy exchange. Under wet/dry conditions, there is a positive correlation between rainfall and liquid water flux under the hydraulic gradient;water vapour migration is the main form under the temperature gradient, which indicates that the influence of water vapour migration on thermalmoisture dynamics of the active layer cannot be neglected. Concurrently, regardless of wet or dry conditions,disturbance of the heat transport by conduction caused by rainfall is stronger than that of convection by liquid water. In addition, when rainfall decreases by 1.5 times(212 mm) and increases by 1.5 times(477 mm), the thickness of the active layer increases by 0.12 m and decreases by 0.21 m, respectively. The results show that dry conditions are not conducive to the preservation of frozen soil;however, wet conditions are conducive to the preservation of frozen soil, although there is a threshold value. When this threshold value is exceeded, rainfall is unfavourable for the development of frozen soil. 展开更多
关键词 Active layer wet/dry conditions Qinghai-Tibet Plateau(QTP) Thermal-moisture dynamics Permafrost thermal stability Numerical modelling
下载PDF
Dry Friction and Wear Characteristics of Impregnated Graphite in a Corrosive Environment 被引量:16
11
作者 JIA Qian YUAN Xiaoyang +2 位作者 ZHANG Guoyuan DONG Guangneng ZHAO Weigang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第5期965-971,共7页
Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research abo... Tribological properties of impregnated graphite are greatly influenced by preparation technology and working conditions and it’s highly susceptible to corrosion environmental impacts,but the experimental research about it are few.In this paper,three kinds of impregnated graphite samples are prepared with different degree of graphitization,the tribological properties of these samples in the dry friction environment and in a corrosive environment are analyzed and contrasted.The tribo-test results show that the friction coefficient of samples is reduced and the amount of wear of samples increase when the graphitization degree of samples increases in dry friction condition.While in a corrosive environment(samples are soaked N2O4),the friction coefficient and amount of wear are changed little if the graphitization degree of samples are low.If the degree of graphitization increase,the friction coefficient and amount of wear of samples increase too,the amount of wear is 2 to 3 times as the samples tested in the non-corrosive environment under pv value of 30MPa?m/s.The impregnated graphite,which friction coefficient is stable and graphitization degree is in mid level,such#2,is more appropriate to have a work in the corrosion conditions.In this paper,preparation and tribological properties especially in corrosive environment of the impregnated graphite is studied,the research conclusion can provide an experimental and theoretical basis for the selection and process improvement of graphite materials,and also provide some important design parameters for contact seal works in a corrosive environment. 展开更多
关键词 corrosive environment impregnated graphite GRAPHITIZATION dry friction coefficient of friction amount of wear
下载PDF
Root distribution and influencing factors of dry-sowing and wet-growing cotton plants under different water conditions
12
作者 DING Yu ZHANG Jianghui +4 位作者 BAI Yungang LIU Hongbo ZHENG Ming ZHAO Jinghua XIAO Jun 《排灌机械工程学报》 CSCD 北大核心 2023年第10期1073-1080,共8页
To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequenci... To study the effect of soil water and salt environment factors on the root growth of cotton under different moisture control,three different emergence water volumes(60,105,and 150 m^(3)/hm^(2)),two different frequencies(high frequency and low frequency)and one double film cover winter irrigation control treatment(CK:2250 m^(3)/hm^(2))were set up to analyze the spatial distribution patterns of soil water and salt environment and root density in dry sown and wet emerged cotton fields under diffe-rent moisture control conditions.The results show that the soil water content and water infiltration range gradually become larger with the increase of seedling water quantity,and the larger the seedling water quantity,the higher the soil water content.With the same seedling water quantity,the soil water content of the high-frequency(HF)treatment becomes obviously larger.The soil conductivity of each treatment tends to decrease gradually with the increase of seedling water and drip frequency,among which the distribution of soil conductivity of S6 treatment is closest to that of CK.With the increase in soil depth,the soil conductivity tends to increase first and then decrease.Compared with the low-frequency(LF)treatment,the high-frequency treatment shows a significantly deeper soil salt accumulation layer.The root length density(RLD)of cotton gradually increases with the amount of seedling water and the frequency of dripping.The soil layer of root distribution gradually deepens with the amount of seedling water in the vertical direction,and the RLD value in the horizontal direction is significantly greater in the mulched area than that in the bare area between films.This research can serve as a solid scientific foundation for the use of dry sowing and wet emergence techniques in cotton fields in southern Xinjiang. 展开更多
关键词 COTTON double film mulching dry sowing and wet germination moisture regulation water and salt distribution root distribution cotton double film mulching dry sowing and wet germination moisture regulation water and salt distribution root distribution
下载PDF
The Effect of Basalt Fiber on Concrete Performance under a Sulfate Attack Environment
13
作者 Qiang Su Jinming Xu 《Journal of Renewable Materials》 SCIE EI 2023年第1期233-244,共12页
To enhance the sulfate attack resistance performance of concrete,Sulfate erosion test was carried out on basalt fiber concrete with different contents,selecting a concentration of 5%sulfate solution and using a dry−we... To enhance the sulfate attack resistance performance of concrete,Sulfate erosion test was carried out on basalt fiber concrete with different contents,selecting a concentration of 5%sulfate solution and using a dry−wet cycle mechanism attack of basalt fiber-reinforced concrete(BFRC).Every 15 dry−wet cycles,the mass,compressive strength,splitting tensile strength,and relative dynamic elastic modulus of BFRC were tested,and the SO_(4)^(2−)con-centration was measured.This work demonstrates that the mass,relative dynamic elastic modulus,compressive and splitting tensile strength of BFRC reveal a trend of climb up and then decline with the process of the dry−wet cycle.Basalt fiber can enhance the sulfate corrosion resistance of concrete by delaying the erosion of concrete induced by SO_(4)^(2−)and increasing the bearing and anti-deformation capacities of concrete by improving its inter-nal structure.Additionally,when mixing 0.2%basalt fiber into concrete,the strength deterioration rate will be reduced when the peak values of splitting tensile and compressive strength appear at 60 and 75 times the alter-nating dry−wet cycles,respectively.Adverse effects will occur when the fiber volume fraction exceeds 0.2%.The research in this paper can provide a foundation for the engineering applications of basalt fiber concrete. 展开更多
关键词 CONCRETE basalt fiber drywet cycle compressive strength splitting tensile strength
下载PDF
IMPACT OF WATER ENVIRONMENTAL CHARACTERISTICS IN DRY-HOT VALLEY OF JINSHA RIVER ON SOIL DESERTIFICATION 被引量:1
14
作者 刘刚才 刘淑珍 《Chinese Geographical Science》 SCIE CSCD 1999年第2期93-96,共4页
Based on the field investigation and the analysis of soil moisture curve, it is clearly shown that there is a positive relationship between vegetation coverage rate and soil moisture capacity and soil depth in dry ho... Based on the field investigation and the analysis of soil moisture curve, it is clearly shown that there is a positive relationship between vegetation coverage rate and soil moisture capacity and soil depth in dry hot valley of the Jinsha River, and also there is a desertification process with seasonality. It is suggested that the basic factor of desertification in the area is water deficiency (seasonal drought and low soil water capacity) and the direct dynamic of desertification is soil erosion. Some effective countermeasures are presented, of which water saving planting and irrigation techniques should be firstly applied in the studied area. 展开更多
关键词 DESERTIFICATION dry HOT VALLEY of the Jinsha RIVER WATER environment
下载PDF
Effect of drying environment on engineering properties of an expansive soil and its microstructure 被引量:11
15
作者 KONG Ling-wei WANG Min +1 位作者 GUO Ai-guo WANG Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第6期1194-1201,共8页
This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under di... This paper investigates the effect of drying environment, i.e. temperature and relative humidity, on the engineering properties and microscopic pore size distribution of an expansive soil. The shrinkage tests under different drying temperatures and relative humidity are carried out in a constant climate chamber. Then, the undisturbed samples, prepared in different drying environment, are used for the triaxial tests and mercury intrusion tests. It is found that the drying environment has noticeable influence on the engineering properties of expansive soils and it can be characterized by the drying rate. The linear shrinkage and strength increase with the decrease of the drying rate. The non-uniform deformation tends to happen in the high drying rate, which subsequently furthers the development of cracks. In addition, during the drying process, the variation of pores mainly focuses on the inter-aggregate pores and inter-particle pores. The lower drying rate leads to larger variation of pore size distribution. 展开更多
关键词 Expansive soils drying environment Shrinkage Strength Pore size distribution Triaxial test
下载PDF
Chloride Resistance of Concrete under Complex Stress and Environment
16
作者 Mohammed Saed Yusuf Xue Wen 《Open Journal of Civil Engineering》 CAS 2023年第1期171-180,共10页
The presence of stress is shown to have a significant impact on chloride ions in concrete. Reinforced concrete is usually durable and cost-effective which has resulted in its widespread use for construction, however, ... The presence of stress is shown to have a significant impact on chloride ions in concrete. Reinforced concrete is usually durable and cost-effective which has resulted in its widespread use for construction, however, the concrete subjected to environment and load has become increasingly apparently that attacked by aggressive agents such as chloride ion. In this study, the coupling influences are stress effects and environmental problems on the coastline concrete durability have been investigated. A series of cyclic of a wet-dry cycle and submersion tests were performed onto the stressed concrete to obtain an understanding of the physical mechanisms causing the accumulation of chlorides in the interior pores of concrete under different stress types and exposure environments, based on the same duration. Specimens were prepared and subjected to NaCl solution in a wet-dry cycle and submersion, the chloride in the tension zone is gradual with increasing the stress level, as well as the chloride ion in the wet-dry cycle, is increasing the number of cycles. The apparent diffusion coefficient of each specimen was calculated respectively, the profile of concentration at a different section of tension and compression zones were presented in influence factors of the number of cycles, the length of drying phase, and periodic wetting cycles with sodium solution was discussed. After employed Fick’s second law, the results suggested D<sub>a</sub> in a wet-dry cycle is much higher than the D<sub>a</sub> in submersion zones. 展开更多
关键词 Concrete Durability Chlorideion PENETRATION wet dry Cycle’s Zone Submerges Zone Compressive Stress Tensile Stress Life Prediction MICRO-STRUCTURE
下载PDF
Indoor Environmental Quality of Air Conditioned Residential Buildings in Extreme Dry Desert Climate
17
作者 Farraj F. Al-Ajmi 《Journal of Power and Energy Engineering》 2018年第8期86-97,共12页
In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air qual... In this study, the indoor environmental quality (IEQ) in air conditioned residential buildings in a dry desert climate is examined from the perspective of occupants via two aspects: thermal comfort and indoor air quality. The study presents statistical data about the domestic-occupant thermal comfort sensations together with data describing the indoor air quality in Kuwaiti residential buildings. With respect to the latter, the overall IEQ acceptance using two measurements namely: physical measurements and subjective information collected via questionnaires, was used to evaluate 111 occupants living in twenty five air-conditioned residential buildings in the state of Kuwait. The operative temperature based on Actual Mean Vote (AMV) and Predicted Mean Vote (PMV) was identified using linear regression analysis of responses on the ASHRAE seven-point thermal sensation scale and was found to be 25.2°C and 23.3°C, respectively, in the summer season. Indoor air quality (IAQ) with respect to carbon dioxide concentration level was compared with the acceptable limits of international standards, i.e. ASHRAE Standard 62.1 [1]. The proposed overall IEQ acceptance findings in residential buildings show CO2 concentration level between 909 and 1250 ppm. However, this may be considered a higher level of CO2 concentration, which may require increasing ventilation rate through window operation or mechanical ventilation. 展开更多
关键词 RESIDENTIAL Buildings RESIDENTIAL INDOOR environments INDOOR Air Quality Thermal COMFORT dry DESERT CLIMATES
下载PDF
Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation 被引量:25
18
作者 ZHOU Qun JU Cheng-xin +4 位作者 WANG Zhi-qin ZHANG Hao LIU Li-jun YANG Jian-chang ZHANG Jian-hua 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1028-1043,共16页
This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than... This study investigated if super rice could better cope with soil water deficit and if it could have better yield performance and water use efficiency (WUE) under alternate wetting and drying (AWD) irrigation than check rice. Two super rice cultivars and two elite check rice cultivars were grown in pots with three soil moisture levels, well watered (WW), moderate water deficit (MWD) and severe water deficit (SWD). Two cultivars, each for super rice and check rice, were grown in field with three irrigation regimes, alternate wetting and moderate drying (AWMD), alternate wetting and severe drying (AWSD) and conventional irrigation (CI). Compared with that under WW, grain yield was significantly decreased under MWD and SWD treatments, with less reduction for super rice than for check rice. Super rice had higher percentage of productive tillers, deeper root distribution, higher root oxidation activity, and greater aboveground biomass production at mid and late growth stages than check rice, especially under WMD and WSD. Compared with CI,AWMD increased, whereasAWSD decreased grain yield, with more increase or less decrease for super rice than for check rice. Both MWD and SWD treatments and eitherAWMD orAWSD regime significantly increased WUE compared with WW treatment or CI regime, with more increase for super rice than for check rice. The results suggest that super rice has a stronger ability to cope with soil water deficit and holds greater promising to increase both grain yield and WUE by adoption of moderate AWD irrigation. 展开更多
关键词 super rice soil water deficit alternate wetting and drying (AWD) grain yield water use efficiency
下载PDF
Changes in terrestrial surface dry and wet conditions on the Loess Plateau(China) during the last half century 被引量:15
19
作者 YuBi YAO RunYuan WANG +5 位作者 JinHu YANG Ping YUE DengRong LU Guo,Ju XIAO Yang WANG LinChun LIU 《Journal of Arid Land》 SCIE CSCD 2013年第1期15-24,共10页
This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum tem... This paper, using a revised Penman-Monteith model, computed the terrestrial surface humidity index of the Loess Plateau (China) based on climatic factors of monthly mean temperature, maximum temperature, minimum temperature, relative humidity, precipitation, wind speed and sunshine duration observed on the plateau from 1961 to 2008. The temporal-spatial distribution, anomaly distribution and sub-regional temporal variations of the terrestrial surface dry and wet conditions were analyzed as well. The results showed a decreasing trend in the annual average surface humidity from the southeast to the northwest in the research anna. Over the period of 1961-2008, an aridification tendency appeared sharply in the central interior region of the Loess Plateau, and less sharply in the middle part of the region. The border region showed the weakest tendency ol; aridification. It is clear that aridification diffused in all directions from the interior region. The spatial anomaly distribution of the terrestrial surface dry and wet conditions on the Loess Plateau can be divided into three key areas: the southern, western and eastern regions. The terrestrial annual humidity index displayed a significantly descending trend and showed remarkable abrupt changes from wet to dry in the years 1967, 1977 and 1979. In the above mentioned three key areas for dry and wet conditions, the terrestrial annual humidity index exhibited a fluctuation period of 3-4 years, while in the southern region, a fluctuation period of 7-8 years existed at the same time. 展开更多
关键词 dry and wet conditions spatial distribution temporal variation Penman-Monteith model Loess Plateau
下载PDF
Moderate wetting and drying increases rice yield and reduces water use, grain arsenic level, and methane emission 被引量:17
20
作者 Jianchang Yang Qun Zhou jianhua Zhang 《The Crop Journal》 SCIE CAS CSCD 2017年第2期151-158,共8页
To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,no... To meet the major challenge of increasing rice production to feed a growing population under increasing water scarcity,many water-saving regimes have been introduced in irrigated rice,such as an aerobic rice system,non-flooded mulching cultivation,and alternate wetting and drying(AWD).These regimes could substantially enhance water use efficiency(WUE) by reducing irrigation water.However,such enhancements greatly compromise grain yield.Recent work has shown that moderate AWD,in which photosynthesis is not severely inhibited and plants can rehydrate overnight during the soil drying period,or plants are rewatered at a soil water potential of-10 to-15 k Pa,or midday leaf potential is approximately-0.60 to-0.80 MPa,or the water table is maintained at 10 to 15 cm below the soil surface,could increase not only WUE but also grain yield.Increases in grain yield WUE under moderate AWD are due mainly to reduced redundant vegetative growth;improved canopy structure and root growth;elevated hormonal levels,in particular increases in abscisic acid levels during soil drying and cytokinin levels during rewatering;and enhanced carbon remobilization from vegetative tissues to grain.Moderate AWD could also improve rice quality,including reductions in grain arsenic accumulation,and reduce methane emissions from paddies.Adoption of moderate AWD with an appropriate nitrogen application rate may exert a synergistic effect on grain yield and result in higher WUE and nitrogen use efficiency.Further research is needed to understand root–soil interaction and evaluate the long-term effects of moderate AWD on sustainable agriculture. 展开更多
关键词 Alternate wetting and drying(AWD) Grain yield Nitrogen use efficiency Rice Water use efficiency
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部