The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 ...The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 linear scale water model of a 90 t multifunction RH degasser. The circulation rate was directly and more accurately determined, using a new method by which the more reliable results can be obtained. The fluid flow pattern and flow field in the ladle were demonstrated, observed and analyzed. The mixing time of liquid in the ladle was measured using electrical conductivity method. The residence time distribution in the RH model was obtained by tracer response technique. The influence of the main technological and geometric factors, including the gas top blowing (KTB) operation, was examined. The results indicated that the circulation rate of molten steel in the RH degasser can be fairly precisely calculated by the formula: Q lp =0.0333 Q 0.26 g D 0.69 u D 0.80 d(t/min), where Q g-the lifting gas flow rate (NL/min); D u and D d-the inner diameters of the up and down snorkels (cm), respectively. The maximum value of circulation rate of molten steel in the case of the 30 cm diameters either of the up and down snorkels for the RH degasser (the “saturated” rate) is approximately 31 t/min. The corresponding gas flow rate is 900 NL/min. Blowing gas into the vacuum chamber through the top lance like KTB operation does not markedly influence the circulatory flow and mixing characteristics of the RH process under the conditions of the present work. There exist a major loop and a large number of small vortices and eddies in the ladle during the RH refining process. A liquid liquid two phase flow is formed between the descending stream from the down snorkel and the liquid around the stream. All of these flow situation and pattern will strongly influence and determine the mixing and mass transfer in the ladle during the refining. The correlation between the mixing time and the stirring energy density is τ m∝ε -0.50 for the RH degasser. The mixing time rapidly shortens with an increase in the lifting gas flowrate. At a same gas flow rate, the mixing times with the up and down snorkel diameters either of 6 and 7 cm are essentially same. The 30 cm diameters either of the up and down snorkels for the RH degasser would be reasonable. The concentration time curve showed that three circulation cycles are at least needed for complete mixing of the liquid steel in the RH degasser.展开更多
A multi-anabranch river with three braid bars is a typical river pattern in nature, but no studies have been conducted to describe mixing characteristics of pollutants in the river. In this study, a physical model of ...A multi-anabranch river with three braid bars is a typical river pattern in nature, but no studies have been conducted to describe mixing characteristics of pollutants in the river. In this study, a physical model of a typical multi-anabranch river with three braid bars was established to explore the pollutant mixing characteristics in different branches. The multi-anabranch reach was separated into seven branches, B1, B2, B3, B4, B5, B6, and BT, by three braid bars. Five tracer release positions located 2.9 m upstream from the inlet section of the multi-anabranch reach were adopted, and the distances from the five positions to the left bank of the upstream main channel were 1/6B, 1/3B, 1/2B, 2/3B, and 5/6B (B is the width of the upstream main channel), respectively. The longitudinal velocities and pollutant concentrations in the seven branches were measured. The planar flow field and mixing characteristics of pollutants from the bottom to the surface in the multi-anabranch river were obtained and analyzed. The results show that the pollutant release positions are the main influencing factors in the pollutant transport process, and the diversion points and pollutant release positions jointly influence the percentage ratios of the pollutant fluxes in branches B 1, B2, and B3 to the pollutant flux in the upstream main channel.展开更多
The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being ad...The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being added with PF. The effects of the method on enhancing the dough qualities were verified, and the distribution of water in gluten-gelatinized starch matrix of the doughs was investigated. We observed that the bread qualities were improved, as reflected by the increase of specific volume from 2.26 to 2.96 m L g^–1 and the decrease of crumb hardness from 417.93 to 255.57 g. The results from rheofermentometric measurements showed that the dough mixed using the developed mixing method had higher maximum dough height value, time of dough porosity appearance, and gas retention coefficient, as well as enhanced gluten matrix formation compared to that mixed by the traditional mixing method. The results from low-field nuclear magnetic resonance confirmed that the competitive water absorption between gluten and gelatinized starch could restrict the formation of gluten network in the dough mixed using the traditional mixing process. Using the novel mixing method, gluten could be sufficiently hydrated in stage 1, which could then weaken the competitive water absorption caused by gelatinized starch in stage 2;this could also be indicated by the greater mobility of proton in PF and better development of gluten network during mixing.展开更多
A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixin...A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.展开更多
In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column w...In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column with tapings at different height of the bed to collect the sample. The binary particles considered in this study are hematite(4800 kg/m3) and quartz(2600 kg/m3) at different size fractions in the range of average size 87×10^(-6)m to 400×10^(-6)m. It is observed that for various binary mixtures, both quartz and hematite particles share the equal composition by mass(50%) at a particular height of fluidized bed, referred as ‘‘locus point'' of mixing. Study indicates that the mixing zone volume will increase for a continuous fluidized bed plant operation. It is observed that the number of locus points varies from 1 to 3 signifying their dependency on the size ratios of binary mixture. Whenever, the difference in terminal velocity between quartz and hematite particles approaches to zero, mixing is enhanced.Further, the present study is extended to find the segregation index for the different size ratios of quartz and hematite particles. It is evident that depending on the size ratios, various regions such as complete segregation, partial mixing and complete mixing can be observed.展开更多
The coating substrate bonding strengths under different intermixing processes were evaluated by scratch and spherical rolling contact fatigue methods. The results show that for low bombarding energy of N ions dynamic ...The coating substrate bonding strengths under different intermixing processes were evaluated by scratch and spherical rolling contact fatigue methods. The results show that for low bombarding energy of N ions dynamic recoiling at 10 keV and 20 keV, the coating layers are of excellent bonding strengths. The bonding strength of CrN coating with 40 keV static recoiling is higher than that of low energy(20 keV). On the other hand, the bonding strength of coating with 40 keV dynamic recoiling is much lower than that of static recoiling at the same energy and even less than that of dynamic recoiling intermixings at 10 keV and 20 keV energy. The results of scratch and spherical rolling contact fatigue methods exhibit the same trend for each group of recoiling methods, yet the results of the scratch and fatigue tests for two groups do not agree with each other.展开更多
In this paper, we discuss a class of branching processes which generalize the classical Galton-Watson processes: we permit some mixing dependence between the offspring in the same generation. A central limit theorem i...In this paper, we discuss a class of branching processes which generalize the classical Galton-Watson processes: we permit some mixing dependence between the offspring in the same generation. A central limit theorem is established and the Hausdorff dimension on such kind of branching process is given.展开更多
We report the measurement of the intensity difference squeezing via the non-degenerate four-wave mixing process in a rubidium atomic vapor medium. Two pairs of balanced detection systems are employed to measure the pr...We report the measurement of the intensity difference squeezing via the non-degenerate four-wave mixing process in a rubidium atomic vapor medium. Two pairs of balanced detection systems are employed to measure the probe and the conjugate beams, respectively. It is convenient to get the quantum shot noise limit, the squeezed and the amplified noise power spectra. We also investigate the influence of the input extra quadrature amplitude noise of the probe beam. The influence of the extra noise can be minimized and the squeezing can be optimized under the proper parameter condition. We measure the -3.7-dB intensity difference squeezing when the probe beam has a 3-dB extra quadrature amplitude noise. This result is slightly smaller than -4.1 dB when the ideal coherent light (no extra noise) for the probe beam is used.展开更多
To improve the mixing efficiency in water purification or wastewater treatment process and understand the mechanism of mass transfer,and a suitable evaluation factor is introduced to evaluate the efficiency of mixing ...To improve the mixing efficiency in water purification or wastewater treatment process and understand the mechanism of mass transfer,and a suitable evaluation factor is introduced to evaluate the efficiency of mixing process.The diffusion mass transfer under turbulent condition is investigated based on dynamic and mathematical analysis.The results indicate that submicroscopic diffusion is the rate-limiting step in mass transfer,and the inertia effect of micro vortex causes the phase mixing.An excellent efficiency can be obtained by controlling the scale of micro vortex within millimeter.Furthermore,a new indicator named mixing factor(IH)is proposed to evaluate the efficiency of mixing processes,which is more feasible than conventional evaluation methods,because of its connection of mixing extent with energy consumption.展开更多
Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the cryst...Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the crystalline Ce_2(CO_3)_3·8H_2O and ZrOCl_2·xH_2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce_(0.15)Zr_(0.85)O_2 mixed oxide with pure tetragonal phase structure and medium particle size(D_(50))less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O_2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.展开更多
The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requi...The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requirements.As a multiscale granular system,homogenization is one of the challenges in the paste-mixing process.Due to the high shearing,high concentration,and multiscale characteristics,paste exhibits complex rheological properties in the mixing process.An overview of the mesomechanics and structural evolution is presented in this review.The effects of various influencing factors on the paste's rheological properties were investigated,and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels.The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste.Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags.展开更多
Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Cha...Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.展开更多
Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models.The turbulence associated with non-breaking waves is widely believed to effectively solve thi...Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models.The turbulence associated with non-breaking waves is widely believed to effectively solve this problem.In many studies,non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs).In the present work,the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation,as well as climate,models.The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean.The models evaluated,including those considering LC effects alone and the combined effects of LCs and wave breaking,failed to produce a reasonable summertime thermocline,resulting in a large cold bias in the subsurface layer.Therefore,while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models,LCs are insufficient to solve the problem of insufficient vertical mixing.Moreover,restriction of non-breaking surface wave-induced processes in LCs may be questionable.展开更多
A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equati...A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equation system we derive the distribution of local jumps and give the exponential ergodicity in Wasserstein-type distances of the transition semigroup.Meanwhile,we study immigration structures associated with the process and prove the existence of the stationary distribution of the process with immigration.展开更多
Cascaded fiber geometry with the dispersion of each fiber decreasing is proposed to enhance the multiple four-wave mixing(FWM) generation. The first fiber with relatively large dispersion initiates and accelerates t...Cascaded fiber geometry with the dispersion of each fiber decreasing is proposed to enhance the multiple four-wave mixing(FWM) generation. The first fiber with relatively large dispersion initiates and accelerates the expansion of multiple FWM, and the second fiber with small dispersion would allow the phase-matching process(thus the spectrum broadening)to keep going. Numerical and experimental results show that with this geometry not only multiple FWM expansion can be accelerated, but also the efficiency of multiple FWM products can be effectively improved with shorter fibers.展开更多
The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. Th...The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.展开更多
By Analyzing the behavior and character of derivative security, the authors established a pricing model of multiattribute derivative security whose underlying asset pricing process is a mixed process, and obtained a n...By Analyzing the behavior and character of derivative security, the authors established a pricing model of multiattribute derivative security whose underlying asset pricing process is a mixed process, and obtained a new model for option pricing of multiattribute derivatives based on mixed process, and improved some original results.展开更多
The paper proposes a process-functional model of transportation mix concrete, which is a structured description of a means of transportation technology mix concrete road at the level of the production process. Range o...The paper proposes a process-functional model of transportation mix concrete, which is a structured description of a means of transportation technology mix concrete road at the level of the production process. Range of activities related to the transportation of concrete mixtures is presented in the form of hierarchically nested processes that are coordinated on the basis of general systems theory. The model is described in a strict sequence: process chain→process step→process link, and all built technological chains consist of indivisible units.展开更多
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical...The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.展开更多
文摘The flow and mixing characteristics of molten steel during the vacuum circulation refining, including RH(Ruhrstahl Heraeus) and RH KTB(Ruhrstahl Heraeus Kawasaki top blowing) processes, were investigated on a 1/5 linear scale water model of a 90 t multifunction RH degasser. The circulation rate was directly and more accurately determined, using a new method by which the more reliable results can be obtained. The fluid flow pattern and flow field in the ladle were demonstrated, observed and analyzed. The mixing time of liquid in the ladle was measured using electrical conductivity method. The residence time distribution in the RH model was obtained by tracer response technique. The influence of the main technological and geometric factors, including the gas top blowing (KTB) operation, was examined. The results indicated that the circulation rate of molten steel in the RH degasser can be fairly precisely calculated by the formula: Q lp =0.0333 Q 0.26 g D 0.69 u D 0.80 d(t/min), where Q g-the lifting gas flow rate (NL/min); D u and D d-the inner diameters of the up and down snorkels (cm), respectively. The maximum value of circulation rate of molten steel in the case of the 30 cm diameters either of the up and down snorkels for the RH degasser (the “saturated” rate) is approximately 31 t/min. The corresponding gas flow rate is 900 NL/min. Blowing gas into the vacuum chamber through the top lance like KTB operation does not markedly influence the circulatory flow and mixing characteristics of the RH process under the conditions of the present work. There exist a major loop and a large number of small vortices and eddies in the ladle during the RH refining process. A liquid liquid two phase flow is formed between the descending stream from the down snorkel and the liquid around the stream. All of these flow situation and pattern will strongly influence and determine the mixing and mass transfer in the ladle during the refining. The correlation between the mixing time and the stirring energy density is τ m∝ε -0.50 for the RH degasser. The mixing time rapidly shortens with an increase in the lifting gas flowrate. At a same gas flow rate, the mixing times with the up and down snorkel diameters either of 6 and 7 cm are essentially same. The 30 cm diameters either of the up and down snorkels for the RH degasser would be reasonable. The concentration time curve showed that three circulation cycles are at least needed for complete mixing of the liquid steel in the RH degasser.
基金supported by the National Basic Research Program of China (973 Program, Grant No.2008CB418202)the National Natural Science Foundation of China (Grants No. 50979026 and 51179052)+3 种基金the National Key Technologies R&D Program of China (Grant No. 2012BAB03B04) the Special Fund for Public Welfare Industry of the Ministry of Water Resources of China (Grant No. 201001028)the "Six Talent Peak" Project of Jiangsu Province (Grant No. 08-C) the Fundamental Research Funds for the Central Universities (Grant No. 2010B15514)
文摘A multi-anabranch river with three braid bars is a typical river pattern in nature, but no studies have been conducted to describe mixing characteristics of pollutants in the river. In this study, a physical model of a typical multi-anabranch river with three braid bars was established to explore the pollutant mixing characteristics in different branches. The multi-anabranch reach was separated into seven branches, B1, B2, B3, B4, B5, B6, and BT, by three braid bars. Five tracer release positions located 2.9 m upstream from the inlet section of the multi-anabranch reach were adopted, and the distances from the five positions to the left bank of the upstream main channel were 1/6B, 1/3B, 1/2B, 2/3B, and 5/6B (B is the width of the upstream main channel), respectively. The longitudinal velocities and pollutant concentrations in the seven branches were measured. The planar flow field and mixing characteristics of pollutants from the bottom to the surface in the multi-anabranch river were obtained and analyzed. The results show that the pollutant release positions are the main influencing factors in the pollutant transport process, and the diversion points and pollutant release positions jointly influence the percentage ratios of the pollutant fluxes in branches B 1, B2, and B3 to the pollutant flux in the upstream main channel.
基金supported by the National Natural Science Foundation of China (31701527)the National Key Research and Development Program of China (2017YFD0400401)+1 种基金the Policy Guidance Program of Jiangsu Province, China (SZ-SQ2017021)the Jiangsu Province “Collaborative Innovation Center of Food Safety and Quality Control” industry development program, China。
文摘The two-stage dough mixing process was innovated to improve the qualities of bread made from potato flour(PF) and wheat flour at a ratio of 1:1(w/w). The final dough was first prepared from wheat flour before being added with PF. The effects of the method on enhancing the dough qualities were verified, and the distribution of water in gluten-gelatinized starch matrix of the doughs was investigated. We observed that the bread qualities were improved, as reflected by the increase of specific volume from 2.26 to 2.96 m L g^–1 and the decrease of crumb hardness from 417.93 to 255.57 g. The results from rheofermentometric measurements showed that the dough mixed using the developed mixing method had higher maximum dough height value, time of dough porosity appearance, and gas retention coefficient, as well as enhanced gluten matrix formation compared to that mixed by the traditional mixing method. The results from low-field nuclear magnetic resonance confirmed that the competitive water absorption between gluten and gelatinized starch could restrict the formation of gluten network in the dough mixed using the traditional mixing process. Using the novel mixing method, gluten could be sufficiently hydrated in stage 1, which could then weaken the competitive water absorption caused by gelatinized starch in stage 2;this could also be indicated by the greater mobility of proton in PF and better development of gluten network during mixing.
基金Supported by the National Natural Science Foundation of China(21176014,20990221,21121064)the Science-Technology Project for Supervisors of Excellent Doctor Degree Thesis of Beijing(20111001001)
文摘A slow bromination process of butyl rubber (IIR) suffers from low efficiency and low selectivity (S) of target-product. To obtain suitable approach to intensify the process, effects of assistant solvents and mixing inten-sity on the bromination process were systemically studied in this paper. The reaction process was found constantly accelerated with the increasing dosage and polarity of assistant solvent. Hexane with 30%(by volume) dichloro-methane was found as the suitable solvent component, where the stable conversion of 1,4-isoprene transferring to target product (xA1s) of 80.2%and the corresponding S of 91.2%were obtained in 5 min. The accelerated reaction process was demonstrated being remarkably affected by mixing intensity until the optimal stirring rate of 1100 r·min-1 in a stirred tank reactor. With better mixing condition, a further intensification of the process was achieved in a ro-tating packed bed (RPB) reactor, where xA1s of 82.6% and S of 91.9% were obtained in 2 min. The usage of the suitable solvent component and RPB has potential application in the industrial bromination process intensification.
文摘In order to identify the mixing and segregation behaviors in a mineral processing operation, present study aimed on the hydrodynamics of solid–liquid fluidization. The study was carried out in a fluidization column with tapings at different height of the bed to collect the sample. The binary particles considered in this study are hematite(4800 kg/m3) and quartz(2600 kg/m3) at different size fractions in the range of average size 87×10^(-6)m to 400×10^(-6)m. It is observed that for various binary mixtures, both quartz and hematite particles share the equal composition by mass(50%) at a particular height of fluidized bed, referred as ‘‘locus point'' of mixing. Study indicates that the mixing zone volume will increase for a continuous fluidized bed plant operation. It is observed that the number of locus points varies from 1 to 3 signifying their dependency on the size ratios of binary mixture. Whenever, the difference in terminal velocity between quartz and hematite particles approaches to zero, mixing is enhanced.Further, the present study is extended to find the segregation index for the different size ratios of quartz and hematite particles. It is evident that depending on the size ratios, various regions such as complete segregation, partial mixing and complete mixing can be observed.
文摘The coating substrate bonding strengths under different intermixing processes were evaluated by scratch and spherical rolling contact fatigue methods. The results show that for low bombarding energy of N ions dynamic recoiling at 10 keV and 20 keV, the coating layers are of excellent bonding strengths. The bonding strength of CrN coating with 40 keV static recoiling is higher than that of low energy(20 keV). On the other hand, the bonding strength of coating with 40 keV dynamic recoiling is much lower than that of static recoiling at the same energy and even less than that of dynamic recoiling intermixings at 10 keV and 20 keV energy. The results of scratch and spherical rolling contact fatigue methods exhibit the same trend for each group of recoiling methods, yet the results of the scratch and fatigue tests for two groups do not agree with each other.
文摘In this paper, we discuss a class of branching processes which generalize the classical Galton-Watson processes: we permit some mixing dependence between the offspring in the same generation. A central limit theorem is established and the Hausdorff dimension on such kind of branching process is given.
基金supported by the National Basic Research Program of China (Grant No. 2011CB921601)the National Natural Science Foundation of China (Grant No. 11234008)+1 种基金the National Natural Science Foundation of China for Excellent Research Team (Grant No. 61121064)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20111401130001)
文摘We report the measurement of the intensity difference squeezing via the non-degenerate four-wave mixing process in a rubidium atomic vapor medium. Two pairs of balanced detection systems are employed to measure the probe and the conjugate beams, respectively. It is convenient to get the quantum shot noise limit, the squeezed and the amplified noise power spectra. We also investigate the influence of the input extra quadrature amplitude noise of the probe beam. The influence of the extra noise can be minimized and the squeezing can be optimized under the proper parameter condition. We measure the -3.7-dB intensity difference squeezing when the probe beam has a 3-dB extra quadrature amplitude noise. This result is slightly smaller than -4.1 dB when the ideal coherent light (no extra noise) for the probe beam is used.
基金Sponsored by the National Eleventh Five-year Special Item of Water Pollution (Grant No.2008ZX07207-005-02)the National Eleventh Five-year Supporting Plan of Science and Technology(Grant No.2006BAJ03A05 -01)the Excellent Younger Teacher Awards Project of Harbin Institute of Technology(Grant No.NACZ98504851)
文摘To improve the mixing efficiency in water purification or wastewater treatment process and understand the mechanism of mass transfer,and a suitable evaluation factor is introduced to evaluate the efficiency of mixing process.The diffusion mass transfer under turbulent condition is investigated based on dynamic and mathematical analysis.The results indicate that submicroscopic diffusion is the rate-limiting step in mass transfer,and the inertia effect of micro vortex causes the phase mixing.An excellent efficiency can be obtained by controlling the scale of micro vortex within millimeter.Furthermore,a new indicator named mixing factor(IH)is proposed to evaluate the efficiency of mixing processes,which is more feasible than conventional evaluation methods,because of its connection of mixing extent with energy consumption.
文摘Ultra-fine CeO_2-ZrO_2 mixed oxide was successfully synthesized by wet-solid phase mechanochemical processing, Ce_2(CO_3)_3·8H_2O, ZrOCl_2·xH_2O and ammonia were used as reactants. It is found that the crystalline Ce_2(CO_3)_3·8H_2O and ZrOCl_2·xH_2O are changed to amorphous cerium and zirconium hydroxide precursor after milling with ammonia, and Ce_(0.15)Zr_(0.85)O_2 mixed oxide with pure tetragonal phase structure and medium particle size(D_(50))less than 1μm is formed by calcining precursor over 673 K. The XRD patterns indicate that the crystal unite size increases with rising calcining temperature due to crystal growth. However, the particle size and BET surface area of the Ce(Zr)O_2 mixed oxide decreases with rising calcining temperature, which may be attributed to the contract of particles and the vanish of holes inside grains.
基金financially supported by the National Key R&D Program of China (No.2022YFC2903803)the National Natural Science Foundation of China (No.52130404)+3 种基金China Postdoctoral Science Foundation (No.2021M690011)Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110161)Postdoctor Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No.2021BH011)the Fundamental Research Funds for the Central Universities (No.FRF-TP-22-112A1)
文摘The technology of cemented paste backfill(CPB)is an effective method for green mining.In CPB,mixing is a vital process aiming to prepare a paste that meets the non-stratification,non-segregation,and non-bleeding requirements.As a multiscale granular system,homogenization is one of the challenges in the paste-mixing process.Due to the high shearing,high concentration,and multiscale characteristics,paste exhibits complex rheological properties in the mixing process.An overview of the mesomechanics and structural evolution is presented in this review.The effects of various influencing factors on the paste's rheological properties were investigated,and the rheological models of the paste were outlined from the macroscopic and mesoscopic levels.The results show that the mechanical effects and structural evolution are the fundamental factors affecting the rheological properties of the paste.Existing problems and future development trends are presented to change the practice where the CPB process comes first and the theory lags.
文摘Chemical and biochemical analysis methods were used to monitor the vedations of nitrogen nutrient among the dominance trees species in secondary succession process of the mixed broad - leaved/Korean pine forest on Changbai Mountains, Northeast China. Amounts of total nitrogen, anunonium and NRA in soils of virgin broad-leaved/Korean pine forest which is in climax were higher than those of secondary birch forests those are in succession Stage. The amount of nitrate was in the other hand. In climax, dominance trees species are tolerant mesophytic trees such as Pinus Koraiensis, Tilia amurensis, Acer mono and also Fraxinus mandshurica, they are all ammonium + nitrate adapted species, but they show a preference for the anunonium rather than those of the pioneer trees species in secondary birch forest, such as Populus davidiava and Betula platyphylla. Because they have more ammonium in their leaves and roots, especially Pinus koraiensis. Populus davidvana and Betula plaaphlla are intolerant trees, amounts of nitrate and total nitrogen is higher in their leaves and roots and also NRA in their leaves, so they preference for the nitrate rather than the others.In secondary birch forest, the regeneration trees species adapt their nitroggn nutrient to the variation of nitrogen nutrient situation in soil, finally they could survival well and the secondary birch forest would succession to climax. In climax, dominance trees species adapt their Nitrogen nutrient to the situation in soil and there are not strong competition in nitrogen nutrient among them, so they can coexist well and keep the climax as stable vegetation.
基金the National Key Research and Development Program of China(No.2017YFC1404000)the Basic Scientific Fund for National Public Research Institutes of China(No.2018S03)+1 种基金the National Natural Science Foundation of China(Nos.41776038 and 41376036)Dr.Fangli Qiao was supported by the Natural Science Foundation of China(Nos.41821004).
文摘Insufficient vertical mixing in the upper ocean during summer is a common problem of oceanic circulation and climate models.The turbulence associated with non-breaking waves is widely believed to effectively solve this problem.In many studies,non-breaking surface wave processes are attributed to the effects of Langmuir circulations(LCs).In the present work,the influences of LCs on the upper-ocean thermal structure are examined by using one-and three-dimensional ocean circulation,as well as climate,models.The results indicated that the effect of vertical mixing enhanced by LCs is limited to the upper ocean.The models evaluated,including those considering LC effects alone and the combined effects of LCs and wave breaking,failed to produce a reasonable summertime thermocline,resulting in a large cold bias in the subsurface layer.Therefore,while they can slightly reduce the biases of mixed layer depths and sea surface temperatures in models,LCs are insufficient to solve the problem of insufficient vertical mixing.Moreover,restriction of non-breaking surface wave-induced processes in LCs may be questionable.
基金supported by the National Key R&D Program of China(2020YFA0712900)the National Natural Science Foundation of China(11531001).
文摘A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equation system we derive the distribution of local jumps and give the exponential ergodicity in Wasserstein-type distances of the transition semigroup.Meanwhile,we study immigration structures associated with the process and prove the existence of the stationary distribution of the process with immigration.
基金supported by the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2014YQ510403)the National Natural Science Foundation of China(Grant Nos.61377039 and 51527901)
文摘Cascaded fiber geometry with the dispersion of each fiber decreasing is proposed to enhance the multiple four-wave mixing(FWM) generation. The first fiber with relatively large dispersion initiates and accelerates the expansion of multiple FWM, and the second fiber with small dispersion would allow the phase-matching process(thus the spectrum broadening)to keep going. Numerical and experimental results show that with this geometry not only multiple FWM expansion can be accelerated, but also the efficiency of multiple FWM products can be effectively improved with shorter fibers.
基金China Ocean Mineral Resources Research and Development Association program under contract No. DY115-02-1-01the National Basic Research Program of China ("973" Program) under contract No.G2000078503
文摘The formation mechanism of the large hydrothermal sulfide deposit is a complex geological process involving many controlling factors. Mixing between hydrothermal fluid and seawater plays a key role in this process. The results of the Ocean Drilling Program (ODP) indicate that mixing of the evolved seawater and hydrothermal fluid, which is wildly developed within the Trans-Atlantic Geo-Traverse (TAG) hydrothermal deposit, governs the internal structure and chemical compositions of the deposit to great extent. Taking the TAG field for example, the mixing processes of hydrothermal fluid with the seawater heated to different extent are calculated, so as to discuss the impact of hydrothermal fluid/seawater mixing on the formation process of the sulfide deposit. The results indicate that: (1) mixing between the heated seawater and hydrothermal fluid derived from the deep deposit is largely responsible for the wild precipitation of anhydrite within the TAG hydrothermal deposit; (2) 330-310℃ is a special temperature range in the mixing process; (3) the mixing and hydrothermal processes in different zones of the TAG hydrothermal deposit (TAG-1, TAG-2 and TAG-5, etc.) have been discussed based on the simulated results.
基金Supported by the Natural Science Foundation of China (No. 79700022 ) and the AeronauticalFoundation of China(No. 95J55002 )
文摘By Analyzing the behavior and character of derivative security, the authors established a pricing model of multiattribute derivative security whose underlying asset pricing process is a mixed process, and obtained a new model for option pricing of multiattribute derivatives based on mixed process, and improved some original results.
文摘The paper proposes a process-functional model of transportation mix concrete, which is a structured description of a means of transportation technology mix concrete road at the level of the production process. Range of activities related to the transportation of concrete mixtures is presented in the form of hierarchically nested processes that are coordinated on the basis of general systems theory. The model is described in a strict sequence: process chain→process step→process link, and all built technological chains consist of indivisible units.
基金supported by the National Science Foundation of China(Grant No.42177172)China Geological Survey Project(Grant No.DD20230538).
文摘The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.