Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflo...Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.展开更多
This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regi...The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.展开更多
In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the l...In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the leaves, water deficit, water storage capacity were studied in spring and summer, and seasonal changes were determined. According to these indicators of the water regime, the studied varieties belong to the labile water regime, high green mass (centner), seed yield (how many grams), resistance to diseases and pests have been determined, which shows that it is promising for introduction in the conditions of our republic. Therefore, it is recommended to breed these varieties in the foothills and hilly regions of Uzbekistan, where the amount of precipitation is more than 400 - 500 mm.展开更多
The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangr...The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations,especially in non-sandy areas.In 2020,six new meteorological stations,which are closest to the new meteorological stations,were built in the wind erosion source regions(i.e.,sandy areas)in the Quxu–Sangri section.In this study,based on mathematical statistics and empirical orthogonal function(EOF)decomposition analysis,we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021,and discussed the reasons for the discrepancy.The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity(8.3(±0.3)versus 7.7(±0.3)m/s,respectively),frequency(12.9%(±6.2%)versus 2.9%(±1.9%),respectively),and dominant direction(nearly east or west versus nearly north or south,respectively)of sand-driving winds,drift potential(168.1(±77.3)versus 24.0(±17.9)VU(where VU is the vector unit),respectively),resultant drift potential(92.3(±78.5)versus 8.7(±9.2)VU,respectively),and resultant drift direction(nearly westward or eastward versus nearly southward or northward,respectively).This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas.The wind regime between sandy and non-sandy areas differed due to the differences in topography,heat flows,and their coupling with underlying surface,thereby affecting the local atmospheric circulation.Affected by large-scale circulations(westerly jet and Indian monsoon systems),both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime.These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.展开更多
Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.T...Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.展开更多
A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up,depending on the region of ope...A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up,depending on the region of operation.Based on numerical simulations conducted over a wide range of experimentally achievable parameter space,reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets.The results show that the plasma thickness,exponential density gradient,and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one,thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime.Next,it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species.Finally,the feasibility is demonstrated for generating monoenergetic proton beams with energy peak atℰ≈20–40 MeV and a narrow energy spread ofΔℰ/ℰ≈18%–28.6%confined within a divergence angle of∼175 mrad at a reasonable laser peak intensity of I0≃5.4×10^(20)W/cm^(2).展开更多
To understand the effect of regime shift in Caohai Lake in Yunnan-Guizhou Plateau,SW China from submerged macrophyte dominance to phytoplankton dominance on the specification and distribution of phosphorus and on ecol...To understand the effect of regime shift in Caohai Lake in Yunnan-Guizhou Plateau,SW China from submerged macrophyte dominance to phytoplankton dominance on the specification and distribution of phosphorus and on ecological and environmental states,changes in phosphorus specification in the sediments and water were studied.The form,composition,and distribution of phosphorus in sediment were sampled in July 2020(before regime shift)and July 2021(after regime shift)were analyzed.Results reveal that phosphorus content in sediment was lower than that those of Erhai Lake and Dianchi Lake,Yunnan,SW China,on the same plateau,and was lower than those of Taihu Lake,Chaohu Lake,and Poyang Lake in the middle-lower Changjiang(Yangtze)River Plain.Organic phosphorus(Or-P)was the main form(up to 60%),followed by inactive phosphorus(Ina-P),and the active phosphorus(Act-P),the least,which is opposite to those of Taihu Lake and Poyang Lake in the middle-lower Changjiang River Plain in the eastern China.Or-P content was high,indicating a high potential risk of phosphorous release.After the regime shift,the total phosphorus in sediment decreased from 0.87±0.13 to 0.70±0.13 g/kg.The proportion of Or-P and Act-P decreased from 68.23% to 65.32% and from 5.35% to 4.69%,respectively.In contrast,the proportion of Ina-P increased from 26.42% to 29.99%.The Moran’s I index revealed that the heterogeneity of the spatial distributions of the total phosphorus(S-TP)and Act-P in the sediments before regime shift was significant(P<0.1).However,the heterogeneity of the spatial distributions of S-TP and the various forms of phosphorus after regime shift was not significant(P>0.05).The regime shift aggravated the eutrophication of the lake,the trophic level index(TLI)increased from 48.42 to 54.49(P<0.01),and the previously mesotrophic lake became a mildly eutrophic lake.The results of this study revealed the impact of regime shift in the lake from submerged macrophyte dominance to phytoplankton dominance on the composition and spatial distribution of phosphorus in sediments and provided a basis for the restoration of eutrophicated and aquatic ecosystem degraded lakes.展开更多
Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonom...Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonomy(CST).However,delineating the STR of China remains a challenge due to the difficulties in accurately estimating MAST50.The objectives of this study were to explore environmental factors that influence the spatial variation of MAST50 and generate an STR map for China.Soil temperature measurements at 40 and 80 cm depth were collected from 386 National Meteorological Stations in China during 1971–2000.The MAST50 was calculated as the average mean annual soil temperature(MAST)from 1971–2000 between 40 and 80 cm depths.In addition,2048 mean annual air temperature(MAAT)measurements from 1971 to 2000 were collected from the National Meteorological Stations across China.A zonal pedotransfer function(PTF)was developed based on the ensemble linear regression kriging model to predict the MAST50 in three topographic steps of China.The results showed that MAAT was the most important variable related to the variation of MAST50.The zonal PTF was evaluated with a 10%validation dataset with a mean absolute error(MAE)of 0.66°C and root mean square error(RMSE)of 0.78°C,which were smaller than the unified model with MAE of 0.83°C and RMSE of 0.96°C,respectively.This study demonstrated that the zonal PTF helped improve the accuracy of the predicted MAST50 map.Based on the prediction results,an STR map across China was generated to provide a consistent scientific base for the improvement and application of CST and land use support.展开更多
The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow...The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed.展开更多
This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC...This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.展开更多
Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neopho...Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neophocaena asiaeorientalis asiaeorientalis),once commonly observed in the Yangtze River-Poyang Lake junction,is now rarely seen in the river-lake corridor.In this study,static passive acoustic monitoring techniques were used to detect the biosonar activities of the Yangtze finless porpoise in this unique corridor.Generalized linear models were used to examine the correlation between these activities and anthropogenic impacts from the COVID-19 pandemic lockdown and boat navigation,as well as environmental variables,including hydrological conditions and light levels.Over approximately three consecutive years of monitoring(2020–2022),porpoise biosonar was detected during 93%of logged days,indicating the key role of the corridor for finless porpoise conservation.In addition,porpoise clicks were recorded in 3.80%of minutes,while feeding correlated buzzes were detected in 1.23%of minutes,suggesting the potential existence of localized,small-scale migration.Furthermore,both anthropogenic and environmental variables were significantly correlated with the diel,lunar,monthly,seasonal,and annual variations in porpoise biosonar activities.During the pandemic lockdown period,porpoise sonar detection showed a significant increase.Furthermore,a significant negative correlation was identified between the detection of porpoise click trains and buzzes and boat traffic intensity.In addition to water level and flux,daylight and moonlight exhibited significant correlations with porpoise biosonar activities,with markedly higher detections at night and quarter moon periods.Ensuring the spatiotemporal reduction of anthropogenic activities,implementing vessel speed restrictions(e.g.,during porpoise migration and feeding),and maintaining local natural hydrological regimes are critical factors for sustaining porpoise population viability.展开更多
Overconfidence behavior,one form of positive illusion,has drawn considerable attention throughout history because it is viewed as the main reason for many crises.Investors’overconfidence,which can be observed as over...Overconfidence behavior,one form of positive illusion,has drawn considerable attention throughout history because it is viewed as the main reason for many crises.Investors’overconfidence,which can be observed as overtrading following positive returns,may lead to inefficiencies in stock markets.To the best of our knowledge,this is the first study to examine the presence of investor overconfidence by employing an artificial intelligence technique and a nonlinear approach to impulse responses to analyze the impact of different return regimes on the overconfidence attitude.We examine whether investors in an emerging stock market(Borsa Istanbul)exhibit overconfidence behavior using a feed-forward,neural network,nonlinear Granger causality test and nonlinear impulseresponse functions based on local projections.These are the first applications in the relevant literature due to the novelty of these models in forecasting high-dimensional,multivariate time series.The results obtained from distinguishing between the different market regimes to analyze the responses of trading volume to return shocks contradict those in the literature,which is the key contribution of the study.The empirical findings imply that overconfidence behavior exhibits asymmetries in different return regimes and is persistent during the 20-day forecasting horizon.Overconfidence is more persistent in the low-than in the high-return regime.In the negative interest-rate period,a high-return regime induces overconfidence behavior,whereas in the positive interest-rate period,a low-return regime induces overconfidence behavior.Based on the empirical findings,investors should be aware that portfolio gains may result in losses depending on aggressive and excessive trading strategies,particularly in low-return regimes.展开更多
In a paper conceived about five years ago(“Globalization and Public Goods:Too Big to Tackle?”)roughly a dozen factors were linked to explain important causal paths from globalization to the potential output of publi...In a paper conceived about five years ago(“Globalization and Public Goods:Too Big to Tackle?”)roughly a dozen factors were linked to explain important causal paths from globalization to the potential output of public goods.The Russian invasion of Ukraine,the corona epidemic,and the increased hegemonic rivalry between China and the U.S.interrupted or even destroyed many of the linkages between globalization and potential public good production.About five important detrimental paths involved in the meantime.In the present article we aim at linking what is left from the previous level of globalization or emerging to form a new and simplified causal model for likely linkages between truncated or(re-)emerging globalization,and the deadly needed output of public goods.These linkages refer to rules of climate control,go to trade linkages and arbitrary tariffs and trade interventions.Regime change,regime formation,and alliance restructuring address aspects of domestic rule and international stability.Selectorate theory,regime type,and exit options for political elites provide key explanatory factors in explaining globalization and public goods productions,or their decay.Where possible we use some data and transformation experiences corroborating our arguments.In other instances need for further empirical macro research will become clear.展开更多
Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding m...Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition.展开更多
Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as eng...Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as engineering excavations.Furthermore,this degradation is further exacerbated under periodic dry-wet environmental conditions.This study investigated the effects of dry-wet cycles and unloading on the mechanical properties of jointed fine sandstone using uniaxial and triaxial compression tests.These tests were performed on rock samples subjected to varying unloading degrees and different numbers of dry-wet cycles.The results demonstrate that with an increase in the unloading degree from 0%to 70%,there is a corresponding decrease in peak stress ranging from 10%to 33%.Additionally,the cohesion exhibits a reduction of approximately 20%to 25%,while the internal friction angle experiences a decline of about 3.5%to 6%.These findings emphasize a significant unloading effect.Moreover,the degree of peak stress degradation in unloading jointed fine sandstone diminishes with an increase in confining pressure,suggesting that confining pressure mitigates the deterioration caused by dry-wet cycles.Additionally,as the number of dry-wet cycles increases,there is a notable decline in the mechanical properties of the sandstone,evidencing significant dry-wet degradation.Utilizing the Drucker Prager criterion,this study establishes a strength criterion and fracture criterion,denoted asσ1(m,n)and,to quantify the combined impacts of dry-wet cycles and unloading on jointed fine sandstone,which provides a comprehensive understanding of its mechanical behavior under such conditions.展开更多
In the summer of 2022,subtropical storm Issa pounded parts of the KwaZulu-Natal Province in South Africa,claiming 459 lives.It displaced more than 40,000 people and caused 36 billion rand($1.92 billion)worth of infras...In the summer of 2022,subtropical storm Issa pounded parts of the KwaZulu-Natal Province in South Africa,claiming 459 lives.It displaced more than 40,000 people and caused 36 billion rand($1.92 billion)worth of infrastructure damage.Issa-related floods and landslides swept away bridges and more than 4,000 homes,mainly in the coastal city of Durban and the surrounding areas.Researchers from Wits University in Johannesburg and the University of Brighton in the UK called the floods the“most catastrophic natural disaster”ever recorded in KwaZulu-Natal.They also attributed them to global warming.展开更多
Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.Thi...Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.展开更多
Background:The liver is fundamental for keeping up the entire body’s homeostasis.The liver hepatocytes have been shown to undergo genomic instability with aging.The stability of the hepatocytes depends on its nuclear...Background:The liver is fundamental for keeping up the entire body’s homeostasis.The liver hepatocytes have been shown to undergo genomic instability with aging.The stability of the hepatocytes depends on its nuclear architecture.Calorie restriction has been shown to extend life-span favorably and this may be through the reorganization of the nuclear structure.Objective:To study the effect of cyclic feeding regime on the chromatin assembly anchored to the nuclear membrane scaffold of rat models hepatocytes nuclei.Method:Rats models underwent cyclic feeding regime,after which nuclei were isolated;then,we investigated the chromatin decondensation and nuclear membrane disintegration of the hepatocytes using fluorescence imaging methods.Results:In 60 seconds,protease decondensed the chromatin and disintegrated the nuclear membrane structure of controls.After the first fasting,the time increased to 145 seconds in 3-month-old rats.The first refeeding increased the time to 156 seconds with a further rise to 340 seconds following the second fasting,then dropped to 116 seconds by the second refeeding.20 months old rats showed 186 seconds increase in the time of chromatin decondensation and nuclear membrane disintegration after the first fasting,with a decrease to 140 seconds observed after first refeeding.The second fasting increased the time to 165 seconds,which then slightly decreased to 163 seconds after the second refeeding.Conclusion:These results show that intermittent fasting may have acted on chromatin histone interactions and the structural lamin networks of the nuclear membranes in bringing about nuclear stability,which is essential for normal cellular function.展开更多
[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), a...[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields.展开更多
文摘Hydrodynamics characterization in terms offlow regime behavior is a crucial task to enhance the design of bubble column reactors and scaling up related methodologies.This review presents recent studies on the typicalflow regimes established in bubble columns.Some effort is also provided to introduce relevant definitions pertaining to thisfield,namely,that of“void fraction”and related(local,chordal,cross-sectional and volumetric)variants.Experimental studies involving different parameters that affect design and operating conditions are also discussed in detail.In the second part of the review,the attention is shifted to cases with internals of various types(perfo-rated plates,baffles,vibrating helical springs,mixers,and heat exchanger tubes)immersed in the bubble columns.It is shown that the presence of these elements has a limited influence on the global column hydrodynamics.However,they can make the homogeneousflow regime more stable in terms of transition gas velocity and transi-tion holdup value.The last section is used to highlight gaps which have not beenfilled yet and future directions of investigation.
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
基金supported by Shandong Provincial Natural Science Foundation (ZR2023MB038)National Natural Science Foundation of China (21808232 and 21978143)Financial support from the Qingdao University of Science and Technology
文摘The homogeneous/particulate fluidization flow regime is particularly suitable for handling the various gas–solid contact processes encountered in the chemical and energy industry.This work aimed to extend such a regime of Geldart-A particles by exerting the axial uniform and steady magnetic field.Under the action of the magnetic field,the overall homogeneous fluidization regime of Geldart-A magnetizable particles became composed of two parts:inherent homogeneous fluidization and newly-created magnetic stabilization.Since the former remained almost unchanged whereas the latter became broader as the magnetic field intensity increased,the overall homogeneous fluidization regime could be extended remarkably.As for Geldart-A nonmagnetizable particles,certain amount of magnetizable particles had to be premixed to transmit the magnetic stabilization.Among others,the mere addition of magnetizable particles could broaden the homogeneous fluidization regime.The added content of magnetizable particles had an optimal value with smaller/lighter ones working better.The added magnetizable particles might raise the ratio between the interparticle force and the particle gravity.After the magnetic field was exerted,the homogeneous fluidization regime was further expanded due to the formation of magnetic stabilization flow regime.The more the added magnetizable particles,the better the magnetic performance and the broader the overall homogeneous fluidization regime.Smaller/lighter magnetizable particles were preferred to maximize the magnetic performance and extend the overall homogeneous fluidization regime.This phenomenon could be ascribed to that the added magnetizable particles themselves became more Geldart-A than-B type as their density or size decreased.
文摘In this article, the names of 3 varieties of Monarda didyma L., which are considered to be introduced species, some indicators of the water regime in the climatic conditions of Uzbekistan: the amount of water in the leaves, water deficit, water storage capacity were studied in spring and summer, and seasonal changes were determined. According to these indicators of the water regime, the studied varieties belong to the labile water regime, high green mass (centner), seed yield (how many grams), resistance to diseases and pests have been determined, which shows that it is promising for introduction in the conditions of our republic. Therefore, it is recommended to breed these varieties in the foothills and hilly regions of Uzbekistan, where the amount of precipitation is more than 400 - 500 mm.
基金supported by the Project for Establishing a Sand-dust Monitoring and Forecast System for the North-bank Settlement Area of the Yarlung Zangbo River (under the 13th Five-year Plan of the Tibet Autonomous Region, China)the Chinese Academy of Sciences Interdisciplinary Innovation Team and the Shannan City Science and Technology Plan Project (E129020301).
文摘The wide valley of the Yarlung Zangbo River is one of the most intense areas in terms of aeolian activity on the Tibetan Plateau,China.In the past,the evaluation of the intensity of aeolian activity in the Quxu–Sangri section of the Yarlung Zangbo River Valley was mainly based on data from the old meteorological stations,especially in non-sandy areas.In 2020,six new meteorological stations,which are closest to the new meteorological stations,were built in the wind erosion source regions(i.e.,sandy areas)in the Quxu–Sangri section.In this study,based on mathematical statistics and empirical orthogonal function(EOF)decomposition analysis,we compared the difference of the wind regime between new meteorological stations and old meteorological stations from December 2020 to November 2021,and discussed the reasons for the discrepancy.The results showed that sandy and non-sandy areas differed significantly regarding the mean velocity(8.3(±0.3)versus 7.7(±0.3)m/s,respectively),frequency(12.9%(±6.2%)versus 2.9%(±1.9%),respectively),and dominant direction(nearly east or west versus nearly north or south,respectively)of sand-driving winds,drift potential(168.1(±77.3)versus 24.0(±17.9)VU(where VU is the vector unit),respectively),resultant drift potential(92.3(±78.5)versus 8.7(±9.2)VU,respectively),and resultant drift direction(nearly westward or eastward versus nearly southward or northward,respectively).This indicated an obvious spatial variation in the wind regime between sandy and non-sandy areas and suggested that there exist problems when using wind velocity data from non-sandy areas to evaluate the wind regime in sandy areas.The wind regime between sandy and non-sandy areas differed due to the differences in topography,heat flows,and their coupling with underlying surface,thereby affecting the local atmospheric circulation.Affected by large-scale circulations(westerly jet and Indian monsoon systems),both sandy and non-sandy areas showed similar seasonal variations in their respective wind regime.These findings provide a credible reference for re-understanding the wind regime and scientific wind-sand control in the middle reaches of the Yarlung Zangbo River Valley.
基金financially supported by National Natural Science Foundation of China(No.U20B6003).
文摘Aqueous foam is broadly applicable to enhanced oil recovery(EOR).The rheology of foam as a function of foam quality,gas and liquid velocities,and surfactant concentration constitute the foundation of its application.The great variations of the above factors can affect the effectiveness of N2 foam in EOR continuously in complex formations,which is rarely involved in previous relevant studies.This paper presents an experimental study of foam flow in porous media by injecting pre-generated N2 foam into a sand pack under the conditions of considering a wide range of gas and liquid velocities and surfactant concentrations.The results show that in a wide range of gas and liquid velocities,the pressure gradient contours are L-shaped near the coordinate axes,but V-shaped in other regions.And the surfactant concentration is a strong factor influencing the trend of pressure gradient contours.Foam flow resistance is very sensitive to the surfactant concentration in both the high-and low-foam quality regime,especially when the surfactant concentration is less than CMC.The foam quality is an important variable to the flow resistance obtained.There exists a transition point from low-to high-quality regime in a particular flow system,where has the maximum flow resistance,the corresponding foam quality is called transition foam quality,which increases as the surfactant concentration increases.The results can add to our knowledge base of foam rheology in porous media,and can provide a strong basis for the field application of foams.
基金supported by the IMPULSE project,which receives funding from the European Union Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No.871161.ELI-ALPSsupported by the European Union and co-financed by the European Regional Development Fund(ERDF)(Grant No.GINOP-2.3.6-15-2015-00001)+2 种基金S.K.and S.M.acknowledge Project No.2020-1.2.4-TÉT-IPARI-2021-00018has been implemented with support provided by the National Research,Development and Innovation Office of Hungary and financed under the Grant No.2020-1.2.4-TET-IPARI-CN funding scheme.S.C.D.M.S.K.acknowledge the High Performance Computation(HPC)facility/service at ELI-ALPS.
文摘A controlled transition between two different ion acceleration mechanisms would pave the way to achieving different ion energies and spectral features within the same experimental set up,depending on the region of operation.Based on numerical simulations conducted over a wide range of experimentally achievable parameter space,reported here is a comprehensive investigation of the different facets of ion acceleration by relativistically intense circularly polarized laser pulses interacting with thin near-critical-density plasma targets.The results show that the plasma thickness,exponential density gradient,and laser frequency chirp can be controlled to switch the interaction from the transparent operating regime to the opaque one,thereby enabling the choice of a Maxwellian-like ion energy distribution with a cutoff energy in the relativistically transparent regime or a quasi-monoenergetic spectrum in the opaque regime.Next,it is established that a multispecies target configuration can be used effectively for optimal generation of quasi-monoenergetic ion bunches of a desired species.Finally,the feasibility is demonstrated for generating monoenergetic proton beams with energy peak atℰ≈20–40 MeV and a narrow energy spread ofΔℰ/ℰ≈18%–28.6%confined within a divergence angle of∼175 mrad at a reasonable laser peak intensity of I0≃5.4×10^(20)W/cm^(2).
基金Supported by the Guizhou Province Science and Technology Plan Project(No.2021470)。
文摘To understand the effect of regime shift in Caohai Lake in Yunnan-Guizhou Plateau,SW China from submerged macrophyte dominance to phytoplankton dominance on the specification and distribution of phosphorus and on ecological and environmental states,changes in phosphorus specification in the sediments and water were studied.The form,composition,and distribution of phosphorus in sediment were sampled in July 2020(before regime shift)and July 2021(after regime shift)were analyzed.Results reveal that phosphorus content in sediment was lower than that those of Erhai Lake and Dianchi Lake,Yunnan,SW China,on the same plateau,and was lower than those of Taihu Lake,Chaohu Lake,and Poyang Lake in the middle-lower Changjiang(Yangtze)River Plain.Organic phosphorus(Or-P)was the main form(up to 60%),followed by inactive phosphorus(Ina-P),and the active phosphorus(Act-P),the least,which is opposite to those of Taihu Lake and Poyang Lake in the middle-lower Changjiang River Plain in the eastern China.Or-P content was high,indicating a high potential risk of phosphorous release.After the regime shift,the total phosphorus in sediment decreased from 0.87±0.13 to 0.70±0.13 g/kg.The proportion of Or-P and Act-P decreased from 68.23% to 65.32% and from 5.35% to 4.69%,respectively.In contrast,the proportion of Ina-P increased from 26.42% to 29.99%.The Moran’s I index revealed that the heterogeneity of the spatial distributions of the total phosphorus(S-TP)and Act-P in the sediments before regime shift was significant(P<0.1).However,the heterogeneity of the spatial distributions of S-TP and the various forms of phosphorus after regime shift was not significant(P>0.05).The regime shift aggravated the eutrophication of the lake,the trophic level index(TLI)increased from 48.42 to 54.49(P<0.01),and the previously mesotrophic lake became a mildly eutrophic lake.The results of this study revealed the impact of regime shift in the lake from submerged macrophyte dominance to phytoplankton dominance on the composition and spatial distribution of phosphorus in sediments and provided a basis for the restoration of eutrophicated and aquatic ecosystem degraded lakes.
基金funded by the National Key Basic Research Special Foundation of China(2021FY100405)the National Natural Science Foundation of China(U20A20114,42201069 and 42077002)the Fundamental Research Funds for Central Non-profit Scientific Institution,China(1610132018012).
文摘Soil temperature regime(STR)is important for soil classification and land use.Generally,STR is delineated by estimating the mean annual soil temperature at a depth of 50 cm(MAST50)according to the Chinese Soil Taxonomy(CST).However,delineating the STR of China remains a challenge due to the difficulties in accurately estimating MAST50.The objectives of this study were to explore environmental factors that influence the spatial variation of MAST50 and generate an STR map for China.Soil temperature measurements at 40 and 80 cm depth were collected from 386 National Meteorological Stations in China during 1971–2000.The MAST50 was calculated as the average mean annual soil temperature(MAST)from 1971–2000 between 40 and 80 cm depths.In addition,2048 mean annual air temperature(MAAT)measurements from 1971 to 2000 were collected from the National Meteorological Stations across China.A zonal pedotransfer function(PTF)was developed based on the ensemble linear regression kriging model to predict the MAST50 in three topographic steps of China.The results showed that MAAT was the most important variable related to the variation of MAST50.The zonal PTF was evaluated with a 10%validation dataset with a mean absolute error(MAE)of 0.66°C and root mean square error(RMSE)of 0.78°C,which were smaller than the unified model with MAE of 0.83°C and RMSE of 0.96°C,respectively.This study demonstrated that the zonal PTF helped improve the accuracy of the predicted MAST50 map.Based on the prediction results,an STR map across China was generated to provide a consistent scientific base for the improvement and application of CST and land use support.
文摘The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed.
基金Funded by the National Natural Science Foundation of China (Nos.U21A20149, 51878003, 51908378)Research Reserve of Anhui Jianzhu University (No.2022XMK01)Excellent Scientific Research and Innovation Team in Colleges and Universities of Anhui Province(No. 2022AH010017)。
文摘This study aims to clarify the effects of curing regimes and lightweight aggregate(LWA)on the morphology, width and mechanical properties of the interfacial transition zone(ITZ) of ultra-high performance concrete(UHPC), and provide reference for the selection of lightweight ultra-high performance concrete(L-UHPC) curing regimes and the pre-wetting degree LWA. The results show that, under the three curing regimes(standard curing, steam curing and autoclaved curing), LWA is tightly bound to the matrix without obvious boundaries. ITZ width increases with the water absorption of LWA and decreases with increasing curing temperature. The ITZ microhardness is the highest when water absorption is 3%, and the microhardness value is more stable with the distance from LWA. Steam and autoclaved curing increase ITZ microhardness compared to standard curing. As LWA pre-wetting and curing temperatures increase, the degree of hydration at the ITZ increases, generating high-density CSH(HD CSH) and ultra-high-density CSH(UHD CSH), and reducing unhydrated particles in ITZ. ITZ micro-mechanical properties are optimized due to hydration products being denser.
基金supported by Science and Technology Service Network Initiative Program of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (41806197)the Exploratory Program of the Natural Science Foundation of Zhejiang Province (ZX2023000154)。
文摘Under increasing anthropogenic pressure,species with a previously contiguous distribution across their ranges have been reduced to small fragmented populations.The critically endangered Yangtze finless porpoise(Neophocaena asiaeorientalis asiaeorientalis),once commonly observed in the Yangtze River-Poyang Lake junction,is now rarely seen in the river-lake corridor.In this study,static passive acoustic monitoring techniques were used to detect the biosonar activities of the Yangtze finless porpoise in this unique corridor.Generalized linear models were used to examine the correlation between these activities and anthropogenic impacts from the COVID-19 pandemic lockdown and boat navigation,as well as environmental variables,including hydrological conditions and light levels.Over approximately three consecutive years of monitoring(2020–2022),porpoise biosonar was detected during 93%of logged days,indicating the key role of the corridor for finless porpoise conservation.In addition,porpoise clicks were recorded in 3.80%of minutes,while feeding correlated buzzes were detected in 1.23%of minutes,suggesting the potential existence of localized,small-scale migration.Furthermore,both anthropogenic and environmental variables were significantly correlated with the diel,lunar,monthly,seasonal,and annual variations in porpoise biosonar activities.During the pandemic lockdown period,porpoise sonar detection showed a significant increase.Furthermore,a significant negative correlation was identified between the detection of porpoise click trains and buzzes and boat traffic intensity.In addition to water level and flux,daylight and moonlight exhibited significant correlations with porpoise biosonar activities,with markedly higher detections at night and quarter moon periods.Ensuring the spatiotemporal reduction of anthropogenic activities,implementing vessel speed restrictions(e.g.,during porpoise migration and feeding),and maintaining local natural hydrological regimes are critical factors for sustaining porpoise population viability.
基金support for the research,authorship,and/or publication of this article.
文摘Overconfidence behavior,one form of positive illusion,has drawn considerable attention throughout history because it is viewed as the main reason for many crises.Investors’overconfidence,which can be observed as overtrading following positive returns,may lead to inefficiencies in stock markets.To the best of our knowledge,this is the first study to examine the presence of investor overconfidence by employing an artificial intelligence technique and a nonlinear approach to impulse responses to analyze the impact of different return regimes on the overconfidence attitude.We examine whether investors in an emerging stock market(Borsa Istanbul)exhibit overconfidence behavior using a feed-forward,neural network,nonlinear Granger causality test and nonlinear impulseresponse functions based on local projections.These are the first applications in the relevant literature due to the novelty of these models in forecasting high-dimensional,multivariate time series.The results obtained from distinguishing between the different market regimes to analyze the responses of trading volume to return shocks contradict those in the literature,which is the key contribution of the study.The empirical findings imply that overconfidence behavior exhibits asymmetries in different return regimes and is persistent during the 20-day forecasting horizon.Overconfidence is more persistent in the low-than in the high-return regime.In the negative interest-rate period,a high-return regime induces overconfidence behavior,whereas in the positive interest-rate period,a low-return regime induces overconfidence behavior.Based on the empirical findings,investors should be aware that portfolio gains may result in losses depending on aggressive and excessive trading strategies,particularly in low-return regimes.
文摘In a paper conceived about five years ago(“Globalization and Public Goods:Too Big to Tackle?”)roughly a dozen factors were linked to explain important causal paths from globalization to the potential output of public goods.The Russian invasion of Ukraine,the corona epidemic,and the increased hegemonic rivalry between China and the U.S.interrupted or even destroyed many of the linkages between globalization and potential public good production.About five important detrimental paths involved in the meantime.In the present article we aim at linking what is left from the previous level of globalization or emerging to form a new and simplified causal model for likely linkages between truncated or(re-)emerging globalization,and the deadly needed output of public goods.These linkages refer to rules of climate control,go to trade linkages and arbitrary tariffs and trade interventions.Regime change,regime formation,and alliance restructuring address aspects of domestic rule and international stability.Selectorate theory,regime type,and exit options for political elites provide key explanatory factors in explaining globalization and public goods productions,or their decay.Where possible we use some data and transformation experiences corroborating our arguments.In other instances need for further empirical macro research will become clear.
基金supported by the Second Tibet Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0905)the Key Program of the National Natural Science Foundation of China(Grant No.41931285)the Key Research and Development Program of Shaanxi Province(Grant No.2019ZDLSF05-07).
文摘Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition.
基金financially supported by the National Natural Science Foundation of China(42177166).
文摘Sandstone is the fundamental material in various engineering and construction projects.However,the mechanical integrity of sandstone can be compromised by initial unloading damage resulting from activities such as engineering excavations.Furthermore,this degradation is further exacerbated under periodic dry-wet environmental conditions.This study investigated the effects of dry-wet cycles and unloading on the mechanical properties of jointed fine sandstone using uniaxial and triaxial compression tests.These tests were performed on rock samples subjected to varying unloading degrees and different numbers of dry-wet cycles.The results demonstrate that with an increase in the unloading degree from 0%to 70%,there is a corresponding decrease in peak stress ranging from 10%to 33%.Additionally,the cohesion exhibits a reduction of approximately 20%to 25%,while the internal friction angle experiences a decline of about 3.5%to 6%.These findings emphasize a significant unloading effect.Moreover,the degree of peak stress degradation in unloading jointed fine sandstone diminishes with an increase in confining pressure,suggesting that confining pressure mitigates the deterioration caused by dry-wet cycles.Additionally,as the number of dry-wet cycles increases,there is a notable decline in the mechanical properties of the sandstone,evidencing significant dry-wet degradation.Utilizing the Drucker Prager criterion,this study establishes a strength criterion and fracture criterion,denoted asσ1(m,n)and,to quantify the combined impacts of dry-wet cycles and unloading on jointed fine sandstone,which provides a comprehensive understanding of its mechanical behavior under such conditions.
文摘In the summer of 2022,subtropical storm Issa pounded parts of the KwaZulu-Natal Province in South Africa,claiming 459 lives.It displaced more than 40,000 people and caused 36 billion rand($1.92 billion)worth of infrastructure damage.Issa-related floods and landslides swept away bridges and more than 4,000 homes,mainly in the coastal city of Durban and the surrounding areas.Researchers from Wits University in Johannesburg and the University of Brighton in the UK called the floods the“most catastrophic natural disaster”ever recorded in KwaZulu-Natal.They also attributed them to global warming.
基金the National Natural Science Foundation of China(Nos.52374147,42372328,and U23B2091)National Key Research and Development Program of China(No.2023YFC3804200)Xinjiang Uygur Autonomous Region Science and Technology Major Program(No.2023A01002).
文摘Underground pumped storage power plant(UPSP)is an innovative concept for space recycling of abandoned mines.Its realization requires better understanding of the dynamic performance and durability of reservoir rock.This paper conducted ultrasonic detection,split Hopkinson pressure bar(SHPB)impact,mercury intrusion porosimetry(MIP),and backscatter electron observation(BSE)tests to investigate the dynamical behaviour and microstructure of sandstone with cyclical dry-wet damage.A coupling FEM-DEM model was constructed for reappearing mesoscopic structure damage.The results show that dry-wet cycles decrease the dynamic compressive strength(DCS)with a maximum reduction of 39.40%,the elastic limit strength is reduced from 41.75 to 25.62 MPa.The sieved fragments obtain the highest crack growth rate during the 23rd dry-wet cycle with a predictable life of 25 cycles for each rock particle.The pore fractal features of the macropores and micro-meso pores show great differences between the early and late cycles,which verifies the computational statistics analysis of particle deterioration.The numerical results show that the failure patterns are governed by the strain in pre-peak stage and the shear cracks are dominant.The dry-wet cycles reduce the energy transfer efficiency and lead to the discretization of force chain and crack fields.
基金funding agency in the public,commercial,or not-for-profit sectors.
文摘Background:The liver is fundamental for keeping up the entire body’s homeostasis.The liver hepatocytes have been shown to undergo genomic instability with aging.The stability of the hepatocytes depends on its nuclear architecture.Calorie restriction has been shown to extend life-span favorably and this may be through the reorganization of the nuclear structure.Objective:To study the effect of cyclic feeding regime on the chromatin assembly anchored to the nuclear membrane scaffold of rat models hepatocytes nuclei.Method:Rats models underwent cyclic feeding regime,after which nuclei were isolated;then,we investigated the chromatin decondensation and nuclear membrane disintegration of the hepatocytes using fluorescence imaging methods.Results:In 60 seconds,protease decondensed the chromatin and disintegrated the nuclear membrane structure of controls.After the first fasting,the time increased to 145 seconds in 3-month-old rats.The first refeeding increased the time to 156 seconds with a further rise to 340 seconds following the second fasting,then dropped to 116 seconds by the second refeeding.20 months old rats showed 186 seconds increase in the time of chromatin decondensation and nuclear membrane disintegration after the first fasting,with a decrease to 140 seconds observed after first refeeding.The second fasting increased the time to 165 seconds,which then slightly decreased to 163 seconds after the second refeeding.Conclusion:These results show that intermittent fasting may have acted on chromatin histone interactions and the structural lamin networks of the nuclear membranes in bringing about nuclear stability,which is essential for normal cellular function.
基金Supported by the National Key Technology R&D Program during the Eleventh Five-year Plan Period,China(2006BAD02A04)the Key Technology R&D Program of Jiangxi Province,China(2009BNA03800)~~
文摘[Objective] To clarify the effects of different straw retention regimes on soil fertility in double cropping paddy field. [Method] The effects of different straw reten- tion regimes on total organic carbon (CToc), active carbon (CA) and mineralized carbon (CM) were analyzed, and carbon pool active (A), carbon pool active index (A/), carbon pool index (CPI) and carbon pool management index (CPMi) for each treat- ment were calculated. [Result] Compared with the unfertilized treatment (CK), CToc, CA, CM and the available ratio of soil carbon were increased in the treatment of re- turning early season and late season rice straws to field. With the same nutrient application, CToc, CA and the available ratio of soil carbon in the field with straw re- turned to field were higher than that of straw incineration and no straw returning, and the change in soil CA content was more significant. The difference in CPMI be- tween different treatments reached significant or very significant level, and the value was in the order of straw directly returned to field 〉 straw returned to field after in- cineration 〉 no straw returned to field. [Conclusion] This study provided theoretical bases for the increase of soil CA content and soil fertility in double rice fields.