This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference...This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.展开更多
This study demonstrates a practical cycle time analysis of dump truck haulage system of “Ukhaa Khudag” open-pit coal mine located in Umnugobi Province, Mongolia. It examines the possibility of minimizing the cycle t...This study demonstrates a practical cycle time analysis of dump truck haulage system of “Ukhaa Khudag” open-pit coal mine located in Umnugobi Province, Mongolia. It examines the possibility of minimizing the cycle time of the haulage system as well as factors impacting the speed of the dump truck. The current study divides the open pit mine road for the dump trucks into five sections which are bench road, ramp, surface road, dump road uphill, and dump road. Meanwhile, it investigates the influence of the length, the grade, and the rolling resistance of the road section on the cycle time. The data is analyzed using mathematical regression methods via Microsoft Excel program. For each of the five road sections, we compare the statistical calculations of three regression models: linear, quadratic and exponential;thus, a total of thirty regression models are obtained in this research. Accordingly, the cycle time for each road section is predicted by the most accountable model. The loaded and empty direction of the movement is measured and calculated for each road section, and it appears that the difference between the calculated mean value and the actual cycle time of the models is 0.82 seconds with a relative error of 2.51 percent.展开更多
In this paper, the performance of a waste rock transportation process in an open pit mine was assessed by using cycle time data. A computerized truck-excavator dispatch system was used to record the cycle times. The p...In this paper, the performance of a waste rock transportation process in an open pit mine was assessed by using cycle time data. A computerized truck-excavator dispatch system was used to record the cycle times. The process was broken into seven steps (or components of the total cycle), durations of which were recorded for a period of 1 month, leading to N = 60,690 data points or dispatches. The open pit mine studied consisted of 12 waste types loaded by 14 excavators and hauled by 49 trucks (at a trucks-to-excavator ratio of 3.5:1) in 75 changing locations. The string-type data was coded using integers to allow a FORTRAN code to extract process performance parameters using statistical analysis. The study established a wide range of parameters including: the waste material generation rate (about 1.73 million t/month, 81% comprising waste rock), truck fill factor, f, total cycle time (Tct), production capacity, theoretical cycle time, non-productive cycle time Tnp, and cycle time performance ratio (CTPR), denoted as Tpr. The factors affecting the process performance include: truck model, excavator model, location (haul distance and road conditions) and material type. For a fixed material type and tonnage, the PDFs of the cycle time components were logarithmic in nature, capable of differentiating performance variations under different factors. It was concluded that the performance of the waste material transportation system in this mine was determined to be acceptable due to mean value of Tpr = 2.432 being closer to unity. Reduction measures were suggested to minimize the cycle time for the process bottlenecks determined from Pareto analysis (that is, full haul, empty haul and loading processes).展开更多
A detailed assessment of an incinerator based on fuel consumption and cycle time data is presented in this paper. The study was conducted at Temeke district hospital for 22 months consecutively covering 654 days of da...A detailed assessment of an incinerator based on fuel consumption and cycle time data is presented in this paper. The study was conducted at Temeke district hospital for 22 months consecutively covering 654 days of daily data collection on fuel consumption and cycle times. The composition for the medical waste incinerated varied between 15% and 35% for sharps waste and between 65% and 85% for other waste, with mean values of 25% and 75%, respectively. The results revealed poor performance of the incinerator due to higher fuel consumption (above 30 L/cycle). The incineration cycle times were observed to range between 2 and 4 hours, all of which were too high for the loading rates observed (55 - 214 kg). A strong dependency of diesel oil consumption on cycle time was observed due to lack of temperature control leading to continuous fuel flow into the burners. The incineration capacity was very low compared to other incinerators in terms of tons per year. This paper gives an insight on the factors affecting incinerator performance assessed based on diesel oil consumption and cycle times. It can be generalized that the incinerator performance was poor due to several factors ranging from poor incinerator design, operator skills, waste management practices, waste storage practices, etc. The hospital was advised to install a new incinerator with short incineration cycle time (30 - 40 minutes) and lower fuel consumption (10 L/cycle) at a loading rate of 200 kg/cycle.展开更多
The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been pe...The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results.展开更多
Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity,energy consumption,greenhouse gas ...Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity,energy consumption,greenhouse gas emissions and associated cost.Payload variance causes significant differences in gross vehicle weights.Heavily loaded trucks travel slower up ramps than lightly loaded trucks.Faster trucks are slowed by the presence of slower trucks,resulting in‘bunching’,production losses and increasing fuel consumptions.This paper simulates the truck bunching phenomena in large surface mines to improve truck and shovel systems’efficiency and minimise fuel consumption.The study concentrated on completing a practical simulation model based on a discrete event method which is most commonly used in this field of research in other industries.The simulation model has been validated by a dataset collected from a large surface mine in Arizona state,USA.The results have shown that there is a good agreement between the actual and estimated values of investigated parameters.展开更多
The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern pa...The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern part of the central depressional zone in the deepwater area of the Qiongdongnan Basin,exhibits a near EW-striking morphology and represents an important potential target for oil/gas exploration.However,the age of the interface of the Lingshui Formation remains controversial,which hinders a comprehensive understanding of the tectonic evolution and hydrocarbon accumulation pattern in the Changchang Sag.This study focuses on well A,located in the depositional center of the Changchang Sag,and employs cyclostratigraphic analysis to identify cyclic signals of the Milankovitch cycles recorded in the sedimentary strata.Spectral analysis of natural gamma logging data from this well reveals the presence of 405 kyr long eccentricity cycles,100 kyr short eccentricity cycles,39.3 kyr obliquity cycles,and 20.58 kyr age precession cycles.By employing astronomical tuning,a“floating”astronomical time scale of the Lingshui Formation spanning 5.483 million years(Myr)is established.The top interface of the Oligocene in the International Geological Time Scale 2020(GTS2020),with a geological age of 23.03 Ma,is used as the time anchor to establish a high-precision absolute astronomical age framework for the Lingshui Formation.The results indicate that the bottom interface of the first member of the Lingshui Formation is dated at 23.79 Ma,the bottom interface of the second member is dated at 25.08 Ma,and the bottom interface of the third member is dated at 28.51 Ma.Additionally,the average sedimentation rate during this period is estimated to be 9.261 cm/kyr.Furthermore,paleoclimate and paleoenvironmental reconstructions were carried out through quantitative analysis of spore and pollen assemblages,as well as foraminifera within the Lingshui Formation.These analyses suggest that the deposition of the Lingshui Formation occurred under warm and humid temperate climatic conditions.The results of paleoclimate proxy analysis and comparative fitting analysis of the astronomical time scale confirm that the climate evolution during this period was influenced by astronomical orbital forces,such as eccentricity and precession.展开更多
The influences of strain amplitude ranges and dwell time at peak strains on the low cycle fatigue (LCF) properties at 600℃ of a new near α high temperature titanium alloy containing rare earth Nd are investigated. ...The influences of strain amplitude ranges and dwell time at peak strains on the low cycle fatigue (LCF) properties at 600℃ of a new near α high temperature titanium alloy containing rare earth Nd are investigated. The creep fatigue interaction behavior is discussed in this paper in terms of a creep fatigue interaction cumulative law and fatigue crack propagation model. The results show that the creep fatigue interaction is largely dependent on the strain amplitude range, and the tensile dwell periods, as well as compressive dwell periods, have a great influence on the LCF life of this alloy.展开更多
A variety of problems in digital circuits, computer networks, automated manufacturing plants, etc., can be modeled as min-max systems. The cycle time is an important performance metric of such systems. In this paper, ...A variety of problems in digital circuits, computer networks, automated manufacturing plants, etc., can be modeled as min-max systems. The cycle time is an important performance metric of such systems. In this paper, we focus on the cycle time assignment of minimax systems which corresponds to the pole assignment problem in traditional linear control systems. For the min- max system with max-plus inputs and outputs, we show that the cycle time can be assigned disjointedly by a state feedback, if and only if the system is reachable. Furthermore, a necessary and sufficient condition for the cycle time to be assigned independently by a state feedback is given. The methods are constructive, and some numerical examples are given to illustrate how the methods work in practice.展开更多
This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was use...This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.展开更多
A metabolic cycle can be viewed as a central core and its branches. The central core is here firstly considered as a pre-closed metabolic cycle (CMC), with a unique first substrate, but with no input or output of othe...A metabolic cycle can be viewed as a central core and its branches. The central core is here firstly considered as a pre-closed metabolic cycle (CMC), with a unique first substrate, but with no input or output of other components. By contrast, the metabolic cycles in nature are open metabolic cycles (OMC) with output and input of external substrates (through “metabolic branches”), modulating continuously the enzyme activities and the total concentration of their substrates thorough complex regulatory phenomena. In this work, the transition from a Closed to an Open metabolic cycle has been simulated by a consecutive entry and exit of two components through the catalytic action of two enzymes. It is known that after any alteration of the initial conditions, the cycles need a time to reach new equilibrium. We have measured the changes of transition time (T.T.) values in 81 models of CMC differing in Km or Vmax values. In general, the T.T. tends to be shorter in cycles with preponderant lower Km and higher Vmax values. Further, Mathematica refinement for the estimation of transition time from the data previously calculated can be obtained with the use of the command Interpolating Function.展开更多
Temperature profiles and cycle times in a large-scale medical waste incinerator installed in a referral hospital were used to assess the performance and functionality of incinerator. The study was conducted using data...Temperature profiles and cycle times in a large-scale medical waste incinerator installed in a referral hospital were used to assess the performance and functionality of incinerator. The study was conducted using data collected from 8 cycles per days for 67 days. For proper combustion and destruction of toxic components in the primary chamber and destruction of pollutants and toxic components in the flue gas, it is desired to reach the maximum temperature in the chambers faster and maintain this maximum temperature for an extended time interval. The primary and secondary temperatures T1 and T2, respectively, were recorded at an interval of one minute for different cycles. Different amounts of wastes with varying proportions of sharps and other wastes were loaded into the incinerator and temperature profiles recorded. The analysis shows that the incinerator works at primary temperature less than the required recommended by manufacturer while the secondary chamber operates between 600 and above 950℃, although higher temperatures up to 1020℃ were observed. The average load preparation time was observed to be 14.6 minutes, while the chamber preheating time before daily initial loading was 25.45 minutes. Both temperature profiles were observed to have similar shapes for all combustion cycles studied, except when incinerator malfunctioning occurred. The average cycle time was established to be 32.7 minutes and 28.97 minutes based on time to drop to 550℃ after the maximum temperature and loading time intervals, respectively, although longer cycle times were observed. Temperature drop in both combustion chambers as a result of waste charging was observed in the interval of 5 minutes. The chamber heating rate was observed to decrease exponentially with time during both preheating and incineration operation.展开更多
High-resolution U–Pb(ID-TIMS,baddeleyite)ages are presented for mafic dykes from selected swarms in two important Amazonian regions:the Carajás Province in the east,and the Rio Apa block in the southwest–areas
AIM: To evaluate the change of growth characteristics and radiosensitivity of irradiated primary cultured human hepatocarcinoma cells. METHODS: All tumor tissue samples were obtained from 39 hepatocarcinoma patients...AIM: To evaluate the change of growth characteristics and radiosensitivity of irradiated primary cultured human hepatocarcinoma cells. METHODS: All tumor tissue samples were obtained from 39 hepatocarcinoma patients with a mean age of 49.6 years (range 22-76 years). We divided the samples into irradiated group and non-irradiated group and measured their plating efficiency (PE), population doubling time (PDT), radiosensitivity index SF2 and cell RESULTS: The PDT of primary culture of hepatocardnoma cells was 91.0±6.6 h, PE was 12.0±1.4%, SF2 was 0.41±0.05%. The PDT of their inadiated progeny was 124.8±5.8 h, PE was 5.0±0.7%, SF2 was 0.65±0.09%. The pdmary cultured human hepatocarcinoma cells showed significant S reduction and G^2 arrest in a dose-dependent manner. The progeny of irradiated primary cultured hepatocarcinoma cells grew more slowly and its radiosensitivity increased. CONCLUSION: The progeny of irradiated primary cultured human hepatocarcinoma cells grows more slowly and its radiosensitivity increases.展开更多
The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no...The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no initial criticality reserve, waste reduction, and a simplified fuel cycle. It has been recognized as an ideal reactor for achieving a closed Th–U cycle. Based on the carrier salt, molten salt fast reactors could be divided into either a molten chloride salt fast reactor(MCFR) or a molten fluoride salt fast reactor(MFFR);to compare their Th–U cycle performance, the neutronic parameters in a breeding and burning(B&B) transition scenario were studied based on similar core geometry and power. The results demonstrated that the required reprocessing rate for an MCFR to achieve self-breeding was lower than that of an MFFR.Moreover, the breeding capability of an MCFR was better than that of an MFFR;at a reprocessing rate of 40 L/day,using LEU and Pu as start-up fissile materials, the doubling time(DT) of an MFFR and MCFR were 88.0 years and 48.0 years, and 16.5 years and 16.2 years, respectively.Besides, an MCFR has lower radio-toxicity due to lower buildup of fission products(FPs) and transuranium(TRU),while an MFFR has a larger, delayed neutron fraction with smaller changes during the entire operation.展开更多
The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem a...The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.展开更多
In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst ...In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst minimum. Our study consists of 200 geomagnetic storms weighed by disturbance storm time (Dst) -50 nT, observed during solar cycle 23. The study suggests that the strength of the geomagnetic storm is strongly dependent on the total magnetic field Btotal. The correlation (-0.72) has been found reasonable. In perspective of previous studies, the strength of the geomagnetic storm is strongly dependent on the southward component (Bz) whereas in present study exposes that the correlation (0.22) is weak. This result indicates that solar wind southward magnetic field component Bz has significant growth particularly before the main phase of geomagnetic storm (not during the main phase). The present result implies that neither density nor temperature is significantly related to the variation of geomagnetic disturbance;rather the effects of the pressure and speed. However, a low plasma beta during highly geoeffective event seems to be an important criterion.展开更多
Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevi...Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.展开更多
Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on ...Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.展开更多
<span lang="EN-US" style="font-family:;" "="">The domestic cat has been used as a model to carry out comparative research in assisted reproduction, to be applied in wild cats. ...<span lang="EN-US" style="font-family:;" "="">The domestic cat has been used as a model to carry out comparative research in assisted reproduction, to be applied in wild cats. The efficiency in domestic cat IVM concerning </span><span lang="EN-US" style="font-family:;" "="">the </span><span lang="EN-US" style="font-family:;" "="">reproductive status and/or cultivation times has previously been investigated;however, the studies were carried out separately. The objective of this research was to evaluate the maturation of oocytes of domestic cats of different reproductive stages using two different <i>in vitro </i>culture times. The ovaries were obtained by Ooforo-Salpingo-Hysterectomy of cats that were of the following groups: 1) prepubertal, 2) follicular, 3) pregnant or 4) in anestrus. Maturation was carried out with TCM199 medium supplemented with BSA for 24 h and 48 h. On average, 29 ± 25, 20 ± 15, 17 ± 9 and 17 ± 13 oocytes/cat were recovered from the prepubertal follicular, pregnant</span><span lang="EN-US" style="font-family:;" "="">,</span><span lang="EN-US" style="font-family:;" "=""> and anestrus stages, respectively, but did not show a significant difference (<i>P</i></span><span lang="EN-US" style="font-family:;" "=""> ></span><span lang="EN-US"> </span><span lang="EN-US" style="font-family:;" "="">0.05). Also, meiotic maturation did not show a significant difference between the different reproductive stages at 24 h and 48 h, respectively (<i>P</i> > 0.05). However, in the prepubertal and follicular stages, greater oocyte maturation numbers were observed at 48 h compared to 24 h (<i>P</i> < 0.05). In contrast, the aforementioned </span><span lang="EN-US" style="font-family:;" "="">result </span><span lang="EN-US" style="font-family:;" "="">was not observed in the pregnant and anestrus stages (<i>P</i> > 0.05), indicating that the <i>in vitro </i>culture duration is an important factor during <i>in vitro</i> maturation of domestic cat oocytes.</span>展开更多
文摘This study aims to evaluate the effect of serum concentration, synchronization time, and confluence degree on the synchronisation efficiency of goat fibroblast cycle. The results indicated that there was no difference in the percentage of nucleated fibroblasts in the G0/G1 stage between serum concentrations of 0.3% and 0.4% (83.89% and 82.69%, respectively, P > 0.05) as well as between serum concentrations of 0.2% and 0.5% (76.95% and 75.46%, respectively, P > 0.05). The percentage of nucleated fibroblasts in the G0/G1 stage was highest at the concentration of 0.3% and lowest in the control group (83.89% vs. 62.67%, P 0.05). The beneficial effect of high confluence was confirmed by the large percentage of nucleated fibroblasts at the G0/G1 stage. The 60% confluency was significantly lower than the 80% and 100% confluency (73.44%, 86.63%, and 87.17%, respectively, P < 0.05). The results indicate that the goat fibroblast cycle synchronization is the most effective at the serum concentration of 0.3%, 72 hours of synchronization and 100% confluency.
文摘This study demonstrates a practical cycle time analysis of dump truck haulage system of “Ukhaa Khudag” open-pit coal mine located in Umnugobi Province, Mongolia. It examines the possibility of minimizing the cycle time of the haulage system as well as factors impacting the speed of the dump truck. The current study divides the open pit mine road for the dump trucks into five sections which are bench road, ramp, surface road, dump road uphill, and dump road. Meanwhile, it investigates the influence of the length, the grade, and the rolling resistance of the road section on the cycle time. The data is analyzed using mathematical regression methods via Microsoft Excel program. For each of the five road sections, we compare the statistical calculations of three regression models: linear, quadratic and exponential;thus, a total of thirty regression models are obtained in this research. Accordingly, the cycle time for each road section is predicted by the most accountable model. The loaded and empty direction of the movement is measured and calculated for each road section, and it appears that the difference between the calculated mean value and the actual cycle time of the models is 0.82 seconds with a relative error of 2.51 percent.
文摘In this paper, the performance of a waste rock transportation process in an open pit mine was assessed by using cycle time data. A computerized truck-excavator dispatch system was used to record the cycle times. The process was broken into seven steps (or components of the total cycle), durations of which were recorded for a period of 1 month, leading to N = 60,690 data points or dispatches. The open pit mine studied consisted of 12 waste types loaded by 14 excavators and hauled by 49 trucks (at a trucks-to-excavator ratio of 3.5:1) in 75 changing locations. The string-type data was coded using integers to allow a FORTRAN code to extract process performance parameters using statistical analysis. The study established a wide range of parameters including: the waste material generation rate (about 1.73 million t/month, 81% comprising waste rock), truck fill factor, f, total cycle time (Tct), production capacity, theoretical cycle time, non-productive cycle time Tnp, and cycle time performance ratio (CTPR), denoted as Tpr. The factors affecting the process performance include: truck model, excavator model, location (haul distance and road conditions) and material type. For a fixed material type and tonnage, the PDFs of the cycle time components were logarithmic in nature, capable of differentiating performance variations under different factors. It was concluded that the performance of the waste material transportation system in this mine was determined to be acceptable due to mean value of Tpr = 2.432 being closer to unity. Reduction measures were suggested to minimize the cycle time for the process bottlenecks determined from Pareto analysis (that is, full haul, empty haul and loading processes).
文摘A detailed assessment of an incinerator based on fuel consumption and cycle time data is presented in this paper. The study was conducted at Temeke district hospital for 22 months consecutively covering 654 days of daily data collection on fuel consumption and cycle times. The composition for the medical waste incinerated varied between 15% and 35% for sharps waste and between 65% and 85% for other waste, with mean values of 25% and 75%, respectively. The results revealed poor performance of the incinerator due to higher fuel consumption (above 30 L/cycle). The incineration cycle times were observed to range between 2 and 4 hours, all of which were too high for the loading rates observed (55 - 214 kg). A strong dependency of diesel oil consumption on cycle time was observed due to lack of temperature control leading to continuous fuel flow into the burners. The incineration capacity was very low compared to other incinerators in terms of tons per year. This paper gives an insight on the factors affecting incinerator performance assessed based on diesel oil consumption and cycle times. It can be generalized that the incinerator performance was poor due to several factors ranging from poor incinerator design, operator skills, waste management practices, waste storage practices, etc. The hospital was advised to install a new incinerator with short incineration cycle time (30 - 40 minutes) and lower fuel consumption (10 L/cycle) at a loading rate of 200 kg/cycle.
基金Fund Project in 2020,China(No.KKZ3202052058)and the support of Scientific Research Fund from Yunnan Education Department in China(No.2022J0064).
文摘The use of nanorefrigerants in Organic Rankine Cycle(ORC)units is believed to affect the cycle environment performance,but backed with very few relevant studies.For this purpose,a life cycle assessment(LCA)has been performed for the ORC system using nanorefrigerant,the material and energy input,characteristic indicators and comprehensive index of environmental impact,total energy consumption and energy payback time(BPBT)of the whole life cycle of ORC system using Al_(2)O_(3)/R141b nanorefrigerant were calculated.Total environmental comprehensive indexes reveal that ECER-135 index decrease by 1.5%after adding 0.2%Al_(2)O_(3)nanoparticles to R141b.Based on the contribution analysis and sensitivity analysis,it can be found out ORC system manufacturing is of the most critical stage,where,the ECER-135 index of ORC component production is the greatest,followed by the preparation process of R141b,transportation phase,and that of Al_(2)O_(3)nanoparticles preparation is small.The retirement phase which has good environmental benefits affects the result significantly by recycling important materials.Meanwhile,the main cause and relevant suggestion for improvement were traced respectively.Finally,the environmental impacts of various power generations were compared,and results show that the power route is of obvious advantage.Among the renewable energy,ORC system using Al_(2)O_(3)/R141b nanorefrigerant with minimal environmental impact is only 0.67%of coal-fired power generation.The environmental impact of current work is about 14.34%of other nations’PV results.
基金CRC MiningThe University of Queensland for their financial support for this study
文摘Data collected from truck payload management systems at various surface mines shows that the payload variance is significant and must be considered in analysing the mine productivity,energy consumption,greenhouse gas emissions and associated cost.Payload variance causes significant differences in gross vehicle weights.Heavily loaded trucks travel slower up ramps than lightly loaded trucks.Faster trucks are slowed by the presence of slower trucks,resulting in‘bunching’,production losses and increasing fuel consumptions.This paper simulates the truck bunching phenomena in large surface mines to improve truck and shovel systems’efficiency and minimise fuel consumption.The study concentrated on completing a practical simulation model based on a discrete event method which is most commonly used in this field of research in other industries.The simulation model has been validated by a dataset collected from a large surface mine in Arizona state,USA.The results have shown that there is a good agreement between the actual and estimated values of investigated parameters.
基金supported by the major program of the China National Offshore Oil Corporation(No.2021-KT-YXKY-05)the National Natural Science Foundation of China(No.41472098).
文摘The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern part of the central depressional zone in the deepwater area of the Qiongdongnan Basin,exhibits a near EW-striking morphology and represents an important potential target for oil/gas exploration.However,the age of the interface of the Lingshui Formation remains controversial,which hinders a comprehensive understanding of the tectonic evolution and hydrocarbon accumulation pattern in the Changchang Sag.This study focuses on well A,located in the depositional center of the Changchang Sag,and employs cyclostratigraphic analysis to identify cyclic signals of the Milankovitch cycles recorded in the sedimentary strata.Spectral analysis of natural gamma logging data from this well reveals the presence of 405 kyr long eccentricity cycles,100 kyr short eccentricity cycles,39.3 kyr obliquity cycles,and 20.58 kyr age precession cycles.By employing astronomical tuning,a“floating”astronomical time scale of the Lingshui Formation spanning 5.483 million years(Myr)is established.The top interface of the Oligocene in the International Geological Time Scale 2020(GTS2020),with a geological age of 23.03 Ma,is used as the time anchor to establish a high-precision absolute astronomical age framework for the Lingshui Formation.The results indicate that the bottom interface of the first member of the Lingshui Formation is dated at 23.79 Ma,the bottom interface of the second member is dated at 25.08 Ma,and the bottom interface of the third member is dated at 28.51 Ma.Additionally,the average sedimentation rate during this period is estimated to be 9.261 cm/kyr.Furthermore,paleoclimate and paleoenvironmental reconstructions were carried out through quantitative analysis of spore and pollen assemblages,as well as foraminifera within the Lingshui Formation.These analyses suggest that the deposition of the Lingshui Formation occurred under warm and humid temperate climatic conditions.The results of paleoclimate proxy analysis and comparative fitting analysis of the astronomical time scale confirm that the climate evolution during this period was influenced by astronomical orbital forces,such as eccentricity and precession.
文摘The influences of strain amplitude ranges and dwell time at peak strains on the low cycle fatigue (LCF) properties at 600℃ of a new near α high temperature titanium alloy containing rare earth Nd are investigated. The creep fatigue interaction behavior is discussed in this paper in terms of a creep fatigue interaction cumulative law and fatigue crack propagation model. The results show that the creep fatigue interaction is largely dependent on the strain amplitude range, and the tensile dwell periods, as well as compressive dwell periods, have a great influence on the LCF life of this alloy.
基金supported by National Natural Science Foundation of China (No.60774007) and the Royal Society of UK
文摘A variety of problems in digital circuits, computer networks, automated manufacturing plants, etc., can be modeled as min-max systems. The cycle time is an important performance metric of such systems. In this paper, we focus on the cycle time assignment of minimax systems which corresponds to the pole assignment problem in traditional linear control systems. For the min- max system with max-plus inputs and outputs, we show that the cycle time can be assigned disjointedly by a state feedback, if and only if the system is reachable. Furthermore, a necessary and sufficient condition for the cycle time to be assigned independently by a state feedback is given. The methods are constructive, and some numerical examples are given to illustrate how the methods work in practice.
文摘This study presents the effect of excavator model, loading operation location, shift availability and truck-shovel combination on loading cycle time and productivity of an open-pit mine. The loading cycle time was used to assess the material loading system performance which is one of the key components of the total cycle time for material transportation in an open-pit mine. Loading is among the components of cycle time during which material is being handled. The data analyzed?was?collected from a computerized dispatch system at GGM from which 62,000 loading dispatches per month involving several shifts, 14 excavators and 49 trucks were loaded. About 4465 dispatches per excavator and 1276 dispatches per truck were assessed using loading cycle time data for each dispatch for a period of four months (between August and December). Under fixed tonnage loaded and waste type (33 t of non-acid forming waste rock),?it was observed that loading cycle time depends on excavator model, location and truck being loaded. Average cycle times, PDFS?and CDFS of loading cycle time series were used to identify differences in performance under different situations. It was concluded that shift availability for excavators, loading location, excavator model and truck-shovel combinations strongly affect the productivity during loading process in an open-pit mine.
文摘A metabolic cycle can be viewed as a central core and its branches. The central core is here firstly considered as a pre-closed metabolic cycle (CMC), with a unique first substrate, but with no input or output of other components. By contrast, the metabolic cycles in nature are open metabolic cycles (OMC) with output and input of external substrates (through “metabolic branches”), modulating continuously the enzyme activities and the total concentration of their substrates thorough complex regulatory phenomena. In this work, the transition from a Closed to an Open metabolic cycle has been simulated by a consecutive entry and exit of two components through the catalytic action of two enzymes. It is known that after any alteration of the initial conditions, the cycles need a time to reach new equilibrium. We have measured the changes of transition time (T.T.) values in 81 models of CMC differing in Km or Vmax values. In general, the T.T. tends to be shorter in cycles with preponderant lower Km and higher Vmax values. Further, Mathematica refinement for the estimation of transition time from the data previously calculated can be obtained with the use of the command Interpolating Function.
文摘Temperature profiles and cycle times in a large-scale medical waste incinerator installed in a referral hospital were used to assess the performance and functionality of incinerator. The study was conducted using data collected from 8 cycles per days for 67 days. For proper combustion and destruction of toxic components in the primary chamber and destruction of pollutants and toxic components in the flue gas, it is desired to reach the maximum temperature in the chambers faster and maintain this maximum temperature for an extended time interval. The primary and secondary temperatures T1 and T2, respectively, were recorded at an interval of one minute for different cycles. Different amounts of wastes with varying proportions of sharps and other wastes were loaded into the incinerator and temperature profiles recorded. The analysis shows that the incinerator works at primary temperature less than the required recommended by manufacturer while the secondary chamber operates between 600 and above 950℃, although higher temperatures up to 1020℃ were observed. The average load preparation time was observed to be 14.6 minutes, while the chamber preheating time before daily initial loading was 25.45 minutes. Both temperature profiles were observed to have similar shapes for all combustion cycles studied, except when incinerator malfunctioning occurred. The average cycle time was established to be 32.7 minutes and 28.97 minutes based on time to drop to 550℃ after the maximum temperature and loading time intervals, respectively, although longer cycle times were observed. Temperature drop in both combustion chambers as a result of waste charging was observed in the interval of 5 minutes. The chamber heating rate was observed to decrease exponentially with time during both preheating and incineration operation.
文摘High-resolution U–Pb(ID-TIMS,baddeleyite)ages are presented for mafic dykes from selected swarms in two important Amazonian regions:the Carajás Province in the east,and the Rio Apa block in the southwest–areas
文摘AIM: To evaluate the change of growth characteristics and radiosensitivity of irradiated primary cultured human hepatocarcinoma cells. METHODS: All tumor tissue samples were obtained from 39 hepatocarcinoma patients with a mean age of 49.6 years (range 22-76 years). We divided the samples into irradiated group and non-irradiated group and measured their plating efficiency (PE), population doubling time (PDT), radiosensitivity index SF2 and cell RESULTS: The PDT of primary culture of hepatocardnoma cells was 91.0±6.6 h, PE was 12.0±1.4%, SF2 was 0.41±0.05%. The PDT of their inadiated progeny was 124.8±5.8 h, PE was 5.0±0.7%, SF2 was 0.65±0.09%. The pdmary cultured human hepatocarcinoma cells showed significant S reduction and G^2 arrest in a dose-dependent manner. The progeny of irradiated primary cultured hepatocarcinoma cells grew more slowly and its radiosensitivity increased. CONCLUSION: The progeny of irradiated primary cultured human hepatocarcinoma cells grows more slowly and its radiosensitivity increases.
基金the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the National Natural Science Foundation of China(No.91326201)。
文摘The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no initial criticality reserve, waste reduction, and a simplified fuel cycle. It has been recognized as an ideal reactor for achieving a closed Th–U cycle. Based on the carrier salt, molten salt fast reactors could be divided into either a molten chloride salt fast reactor(MCFR) or a molten fluoride salt fast reactor(MFFR);to compare their Th–U cycle performance, the neutronic parameters in a breeding and burning(B&B) transition scenario were studied based on similar core geometry and power. The results demonstrated that the required reprocessing rate for an MCFR to achieve self-breeding was lower than that of an MFFR.Moreover, the breeding capability of an MCFR was better than that of an MFFR;at a reprocessing rate of 40 L/day,using LEU and Pu as start-up fissile materials, the doubling time(DT) of an MFFR and MCFR were 88.0 years and 48.0 years, and 16.5 years and 16.2 years, respectively.Besides, an MCFR has lower radio-toxicity due to lower buildup of fission products(FPs) and transuranium(TRU),while an MFFR has a larger, delayed neutron fraction with smaller changes during the entire operation.
文摘The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.
文摘In the present paper dependence of geomagnetic activity on the solar-wind plasma and interplanetary magnetic field (IMF) parameters has been studied. We have taken interplanetary solar wind data at the instant of Dst minimum. Our study consists of 200 geomagnetic storms weighed by disturbance storm time (Dst) -50 nT, observed during solar cycle 23. The study suggests that the strength of the geomagnetic storm is strongly dependent on the total magnetic field Btotal. The correlation (-0.72) has been found reasonable. In perspective of previous studies, the strength of the geomagnetic storm is strongly dependent on the southward component (Bz) whereas in present study exposes that the correlation (0.22) is weak. This result indicates that solar wind southward magnetic field component Bz has significant growth particularly before the main phase of geomagnetic storm (not during the main phase). The present result implies that neither density nor temperature is significantly related to the variation of geomagnetic disturbance;rather the effects of the pressure and speed. However, a low plasma beta during highly geoeffective event seems to be an important criterion.
基金Supported by the National Natural Science Foundation of China under Grant No 10575041.
文摘Based on a deterministic cell cycle model of fission yeast, the effects of the finite cell size on the cell cycle regulation in wee1- cdc25△ double mutant type are numerically studied by using of the chemical Langevin equations. It is found that at a certain region of cell size, our numerical results from the chemical Langevin equations are in good qualitative agreement with the experimental observations. The two resettings to the G2 phase from early stages of mitosis can be induced under the moderate cell size. The quantized cycle times can be observed during such a cell size region. Therefore, a coarse estimation of cell size is obtained from the mesoscopic stochastic cell cycle model.
文摘Pebble bed reactors use cycling scheme of spherical fuel elements relying on fuel elements cycling system (FECS). The structure and control logic of FECS are very complex. Each control link has strict requirements on time and sequence. This increases the difficulties of description and analysis. In this paper, timed places control Petri nets (TPCPN) is applied for the modeling of FECS. On this basis the simulation of two important processes, namely uploading fuel elements into the core for the first time and emptying the core is finished by simulation software Arena. The results show that as TPCPN is able to describe different kinds of logic relationship and has time properties and control properties, it’s very suitable for the modeling and analysis of FECS.
文摘<span lang="EN-US" style="font-family:;" "="">The domestic cat has been used as a model to carry out comparative research in assisted reproduction, to be applied in wild cats. The efficiency in domestic cat IVM concerning </span><span lang="EN-US" style="font-family:;" "="">the </span><span lang="EN-US" style="font-family:;" "="">reproductive status and/or cultivation times has previously been investigated;however, the studies were carried out separately. The objective of this research was to evaluate the maturation of oocytes of domestic cats of different reproductive stages using two different <i>in vitro </i>culture times. The ovaries were obtained by Ooforo-Salpingo-Hysterectomy of cats that were of the following groups: 1) prepubertal, 2) follicular, 3) pregnant or 4) in anestrus. Maturation was carried out with TCM199 medium supplemented with BSA for 24 h and 48 h. On average, 29 ± 25, 20 ± 15, 17 ± 9 and 17 ± 13 oocytes/cat were recovered from the prepubertal follicular, pregnant</span><span lang="EN-US" style="font-family:;" "="">,</span><span lang="EN-US" style="font-family:;" "=""> and anestrus stages, respectively, but did not show a significant difference (<i>P</i></span><span lang="EN-US" style="font-family:;" "=""> ></span><span lang="EN-US"> </span><span lang="EN-US" style="font-family:;" "="">0.05). Also, meiotic maturation did not show a significant difference between the different reproductive stages at 24 h and 48 h, respectively (<i>P</i> > 0.05). However, in the prepubertal and follicular stages, greater oocyte maturation numbers were observed at 48 h compared to 24 h (<i>P</i> < 0.05). In contrast, the aforementioned </span><span lang="EN-US" style="font-family:;" "="">result </span><span lang="EN-US" style="font-family:;" "="">was not observed in the pregnant and anestrus stages (<i>P</i> > 0.05), indicating that the <i>in vitro </i>culture duration is an important factor during <i>in vitro</i> maturation of domestic cat oocytes.</span>