This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation ...This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.展开更多
Using indexes of dryness and wetness in historical record over the recent recent years and rainfall data over the tatest century, the work involves itself with the study of climatological evolution of dryness and wetn...Using indexes of dryness and wetness in historical record over the recent recent years and rainfall data over the tatest century, the work involves itself with the study of climatological evolution of dryness and wetness. periodic variations of climate and interannual laws of variation. The discussion also covers the subjects of effects of El Nino. sunspot, predictors of general circulation on climatic variation of dryness and wetness. There arc main conclusions as follows: (1) The main cyclic variations of climate are 40 and 11 years in Kunming. the former being subject to that of El Nino and the latter to that of sunspots. They are two principal factors for periodic variations of dryness and wetness in Kunming. (2) A close relationship exists between interannual variations and general circulation factors for Kunming. The comprehensive influence as imposed by ENSO and allocations of W.C.E. patterns of circulation in the westerly are ma.tor weather and climate causes for the interannual variations of precipitation in Kunming.展开更多
Precipitation data from 86 observing Stations for the past four decades (from the first operational use to 1994) are used to study and discuss the character of annually mean distribution in Guangdong. Grades of drynes...Precipitation data from 86 observing Stations for the past four decades (from the first operational use to 1994) are used to study and discuss the character of annually mean distribution in Guangdong. Grades of dryness and wetness on a year-to-year basis are determined and preliminary features of dryness and wetness are discussed for the whole of the province and individual regions according to a 5-grade standard of division. The result has shown that there is on an average a rainfall of 1748 mm per year across the province, with four major centers of maxima (of annual rainfall over 2000 mm) at Enping, Qingyuan, Haifeng and Longmen. For the mean across the province, the years 1959. 1 961. 1973.1975, 1991 are anomalously wet and the years 1956, 1963, 1977 and 1991 are anomalously dry. of them, 1973 is the unusually wet year (with the absolute value of precipitation anomaly over twice as large as the standard deviation) and 1956 and 1963 are the usual dry years. For the occurrence frequency of unusually wetness and dryness over individual river valleys in the province, there are more years of dryness in the valleys of the Xijiang and Dongjiang Rivers. More years of wetness in that of the Jianjiang River, and only years of wetness instead of years of dryness in the valleys of Beijiang and Hanjiang Rivers.展开更多
Dryness and wetness variations on different time scales in Shanghai were analyzed using the Standardized Precipitation Index (SPI) based on monthly precipitation data for 1873-2005. The SPI on scales of 3, 6, 12 and...Dryness and wetness variations on different time scales in Shanghai were analyzed using the Standardized Precipitation Index (SPI) based on monthly precipitation data for 1873-2005. The SPI on scales of 3, 6, 12 and 24 months has been calculated. The SPI on 3, 6, 12 and 24 months present 4 wet periods prevailed during 1873-1885, 1904-1923, 1938-1960 and 1983-2005, and 3 dry episodes during 1886-1903, 1924-1937 and 1961-1982. Significant periods of higher wavelet power in the SPI-24 months occurred on the time scales of 2-7-year band in around 1880-1890, 1910-1950 and 1970-1990, and at 8-15-year band in 1920-1960 and 1965-2000 respectively. Periodicities in the SOl and ENSO indices are similar to those in SPI-24 months with little difference, namely, in the SPI-24 months, there are significant periods at the 2-7- and 8-15-year bands during 1930-1940. The periodicity components in individual SPI-24 months, SOl and ENSO indices are more complicated, showing the wetness and dryness variability in Shanghai is controlled by more than one physical factors. The research results indicate that the Shanghai area has experienced dryness and wetness variability on different time scales during the past 133 years.展开更多
Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accum...Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.展开更多
Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on ...Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.展开更多
The main soil type, principle contributor of nutrients and available agricultural land in the Hula Valley is the organic Peat. Nevertheless, the relative contribution of Phosphorus from the Hula Valley to the Lake Kin...The main soil type, principle contributor of nutrients and available agricultural land in the Hula Valley is the organic Peat. Nevertheless, the relative contribution of Phosphorus from the Hula Valley to the Lake Kinneret inputs is lower than regional outsourcing. The Nitrogenic matter, mostly Nitrate migration from the Peat soil is significant. The implementation of efficient development is the key factor of Hula Land use. The financial beneficial success of the Hula land use is therefore dependent of Peat soil properties. The porosity of the Peat Soil is high and preferential pathway volume is low and Hydraulic Conductivity is therefore low. Consequently, the Mobile Spray Irrigation line was found as most suitable for cultivation in Peat Soil. Enhancement of Summer irrigation creating moisture elevation reduces Phosphorus migration from Peat Soil and is therefore recommended and recently implemented.展开更多
Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography o...Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China.展开更多
General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than...General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than three months in both basins. Furthermore, an increase of rainfall variability over time is observed in the Limay river basin but it is not detected in the Neuquen river basin. There is a tendency for wet (dry) periods to take place in El Ni?o (La Ni?a) years in both basins. Rainfall in both basins, have an important annual cycle with its maximum in winter. In addition, possible causes of extreme rainy seasons over the Limay River Basin are detailed. The main result is that the behavior of low level precipitation systems displacing over the Pacific Ocean in April influences the general hydric situation during the whole rainy season. In order to establish the existence of previous circulation patterns associated with interannual SPI variability, the composite fields of wet and dry years are compared. The result is that rainfall is related to El Ni?o- Southern Oscillation (ENSO) phenomenon and circulation over the Pacific Ocean. The prediction scheme, using multiple linear regressions, showed that 46% of the SPI variance can be explained by this model. The scheme was validated by using a cross-validation method, and significant correlations are detected between observed and forecast SPI. A polynomial model is used and it little improved the linear one, explaining the 49% of the SPI variance. The analysis shows that circulation indicators are useful to predict winter rainfall behavior.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA050800)the Key Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-G10)the National Natural Science Foundation of China (Grant No.41671201 and 91525101)
文摘This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.
文摘Using indexes of dryness and wetness in historical record over the recent recent years and rainfall data over the tatest century, the work involves itself with the study of climatological evolution of dryness and wetness. periodic variations of climate and interannual laws of variation. The discussion also covers the subjects of effects of El Nino. sunspot, predictors of general circulation on climatic variation of dryness and wetness. There arc main conclusions as follows: (1) The main cyclic variations of climate are 40 and 11 years in Kunming. the former being subject to that of El Nino and the latter to that of sunspots. They are two principal factors for periodic variations of dryness and wetness in Kunming. (2) A close relationship exists between interannual variations and general circulation factors for Kunming. The comprehensive influence as imposed by ENSO and allocations of W.C.E. patterns of circulation in the westerly are ma.tor weather and climate causes for the interannual variations of precipitation in Kunming.
文摘Precipitation data from 86 observing Stations for the past four decades (from the first operational use to 1994) are used to study and discuss the character of annually mean distribution in Guangdong. Grades of dryness and wetness on a year-to-year basis are determined and preliminary features of dryness and wetness are discussed for the whole of the province and individual regions according to a 5-grade standard of division. The result has shown that there is on an average a rainfall of 1748 mm per year across the province, with four major centers of maxima (of annual rainfall over 2000 mm) at Enping, Qingyuan, Haifeng and Longmen. For the mean across the province, the years 1959. 1 961. 1973.1975, 1991 are anomalously wet and the years 1956, 1963, 1977 and 1991 are anomalously dry. of them, 1973 is the unusually wet year (with the absolute value of precipitation anomaly over twice as large as the standard deviation) and 1956 and 1963 are the usual dry years. For the occurrence frequency of unusually wetness and dryness over individual river valleys in the province, there are more years of dryness in the valleys of the Xijiang and Dongjiang Rivers. More years of wetness in that of the Jianjiang River, and only years of wetness instead of years of dryness in the valleys of Beijiang and Hanjiang Rivers.
基金Frontier Project of Nanjing Institute of Geography and Limnology,CAS, No.CXNIGLAS200814National Forestry Science and Technique Foundation during the 11th Five-Year Plan Period,No.2006BAD03A1601+1 种基金Project of Huaihe River Basin,No.HRM200708National Climate Center,China Meteorological Administration, No.CCSF2007-35
文摘Dryness and wetness variations on different time scales in Shanghai were analyzed using the Standardized Precipitation Index (SPI) based on monthly precipitation data for 1873-2005. The SPI on scales of 3, 6, 12 and 24 months has been calculated. The SPI on 3, 6, 12 and 24 months present 4 wet periods prevailed during 1873-1885, 1904-1923, 1938-1960 and 1983-2005, and 3 dry episodes during 1886-1903, 1924-1937 and 1961-1982. Significant periods of higher wavelet power in the SPI-24 months occurred on the time scales of 2-7-year band in around 1880-1890, 1910-1950 and 1970-1990, and at 8-15-year band in 1920-1960 and 1965-2000 respectively. Periodicities in the SOl and ENSO indices are similar to those in SPI-24 months with little difference, namely, in the SPI-24 months, there are significant periods at the 2-7- and 8-15-year bands during 1930-1940. The periodicity components in individual SPI-24 months, SOl and ENSO indices are more complicated, showing the wetness and dryness variability in Shanghai is controlled by more than one physical factors. The research results indicate that the Shanghai area has experienced dryness and wetness variability on different time scales during the past 133 years.
基金the National Natural Science Foundation of China(No. 50575173).
文摘Under spinning conditions, lubricant on islandic spot patterned M2 steel disc experiences centrifugal and tangential force components. Depending upon the relative position of the spots and the flow of lubricant, accumulation of lubricant in front of patterned islandic spots creates thrusting to mating part and subsequently reduces contact between the mating couple. Whilst wear debris is likely to be spun off the plateau of the spots to their neighbouring valleys so as to reduce wear. Hence, it gives favorable tribological characteristics. Aiming at verifying such mechanisms, studies were performed on M2 steel disc specimens slid with ASSAB 17 tool steel pin. The M2 steel disc specimens were respectively (i) machined with non-patterned (NP), (ii) etched to produce in-lined (INE) islandic patterns, and (iii) etched to produce staggered (STE) islandic spot patterns. Results indicated that the INE patterned discs gave most favorable wear characteristics, the NP of the worse characteristics whilst the STE ranged in the middle. However, the actual contact mechanism leads to the descending sequence of favorable friction behaviors nominally as: NP, INE and STE.
基金This work was supported by the National Natural Science Foundation of China(51706070 and U1910215)the Fundamental Research Funds for the Central Universities(2018ZD03,2020MS008 and 2020MS078).
文摘Wet Flue Gas Desulfurization(WFGD)unit based upon spray scrubber has beenwidely employed to control SO_(2) emissions from flue gas in coal-fired power plant.To clarify the dependence of desulfurization performance on inter-phase transfer behaviors with non-ideal contacting patterns of flue gas and slurry droplets,three regions in spray scrubber are distinguished in terms of gas-slurry flow structures using CFD method in the Eulerian-Lagrangian framework.A comprehensive model is established by involving the transfer process between two phases and chemical reactions in aqueous phase,which is validatedwith the measured data froma WFGD scrubber of 330 MW coal-fired power unit.Numerical results show that the overall uniformity degree of flue gas in whole scrubber is largely determined by the force-balanced droplets in the middle part of scrubber,which is dominated by counter-current mode.Both momentum transfer behavior and SO_(2) chemical absorption process present the synchronicity with the evolution of gas-slurry flow pattern,whilst the heat transfer together with H_(2)O evaporation has little effect on overall absorption process.Three regions are firstly defined as Gas Inlet Region(GIR),Dominant Absorption Region(DAR)and Slurry Dispersed Region(SDR)from the bottom to top of scrubber.SO_(2) is mainly scrubbed in DAR,which provides much more intensive interaction between two phases compared to GIR or SDR.A better understanding of the desulfurization process is obtained from the fundamental relationship between transport phenomena and chemical reactions based upon the complicated hydrodynamics of gas-slurry two-phase flow,which should be useful for designing and optimizing the scrubber in coal-fired power unit.
文摘The main soil type, principle contributor of nutrients and available agricultural land in the Hula Valley is the organic Peat. Nevertheless, the relative contribution of Phosphorus from the Hula Valley to the Lake Kinneret inputs is lower than regional outsourcing. The Nitrogenic matter, mostly Nitrate migration from the Peat soil is significant. The implementation of efficient development is the key factor of Hula Land use. The financial beneficial success of the Hula land use is therefore dependent of Peat soil properties. The porosity of the Peat Soil is high and preferential pathway volume is low and Hydraulic Conductivity is therefore low. Consequently, the Mobile Spray Irrigation line was found as most suitable for cultivation in Peat Soil. Enhancement of Summer irrigation creating moisture elevation reduces Phosphorus migration from Peat Soil and is therefore recommended and recently implemented.
基金supported by the National Key Research and Development Program of China(2017YFC0505105)。
文摘Climate is a key factor to determine the pattern of ecosystems;however,the latitudinal patterns of climatic variables in the arid and semiarid areas remain largely unclear when compared to humid areas.The topography of the dry valleys of southwestern China plays an important role in the formation of climate.However,its impact on the climate remains qualitative.In this study,eight climatic variables from 12 meteorological stations were analyzed to explore their latitudinal patterns in the wet and dry seasons from 1961 to 2019.We also quantified the effects of local topography(RH10)on the climatic variables.The results were as follows:sunshine duration,total solar radiation,average temperature,and evaporation decreased significantly,and wind speed increased significantly with increasing latitude in the annual,wet,and dry seasons(P<0.001).Relative humidity and precipitation decreased significantly with increasing latitude in the wet season(P<0.001),and no obvious change pattern was observed in the dry season.Aridity index significantly decreased(toward dryness)with increasing latitude in the wet season and increased in the dry season(P<0.001).Wind speed had a significantly positive relationship with topography(RH10)(P<0.01),whereas precipitation and aridity index were negatively associated with topography in the wet season and positively associated with topography in the dry season.Dryness was positively associated with RH10 in the wet season,and negatively in the dry season.The results of our research could provide new perspectives for understanding the relationship between topography and drought in the dry valleys of southwestern China.
文摘General features of rainy season with excess or deficits are analyzed using standardized precipitation index (SPI) in Limay and Neuquen River basins. Results indicate that most of dry and wet periods persist less than three months in both basins. Furthermore, an increase of rainfall variability over time is observed in the Limay river basin but it is not detected in the Neuquen river basin. There is a tendency for wet (dry) periods to take place in El Ni?o (La Ni?a) years in both basins. Rainfall in both basins, have an important annual cycle with its maximum in winter. In addition, possible causes of extreme rainy seasons over the Limay River Basin are detailed. The main result is that the behavior of low level precipitation systems displacing over the Pacific Ocean in April influences the general hydric situation during the whole rainy season. In order to establish the existence of previous circulation patterns associated with interannual SPI variability, the composite fields of wet and dry years are compared. The result is that rainfall is related to El Ni?o- Southern Oscillation (ENSO) phenomenon and circulation over the Pacific Ocean. The prediction scheme, using multiple linear regressions, showed that 46% of the SPI variance can be explained by this model. The scheme was validated by using a cross-validation method, and significant correlations are detected between observed and forecast SPI. A polynomial model is used and it little improved the linear one, explaining the 49% of the SPI variance. The analysis shows that circulation indicators are useful to predict winter rainfall behavior.