Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to...Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to is defined which preserves self duality of linear codes. As a consequence self-dual, formally self-dual and self-orthogonal codes over are constructed. Some examples are also given to illustrate this.展开更多
In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized...In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes.展开更多
文摘Let m ≥ 2 be any natural number and let be a finite non-chain ring, where and q is a prime power congruent to 1 modulo (m-1). In this paper we study duadic codes over the ring and their extensions. A Gray map from to is defined which preserves self duality of linear codes. As a consequence self-dual, formally self-dual and self-orthogonal codes over are constructed. Some examples are also given to illustrate this.
文摘In this paper, we construct MDS Euclidean self-dual codes which are ex-tended cyclic duadic codes. And we obtain many new MDS Euclidean self-dual codes. We also construct MDS Hermitian self-dual codes from generalized Reed-Solomon codes and constacyclic codes.