To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load ...To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.展开更多
The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
文摘To minimize the reactive power of the converter of the control winding in the novel dual stator-winding induction generator based on the PWM converter, design features of the induction generator with a rectified load are proposed. The optimization method of excited capacitors to minimize the reactive power of the control winding at a variable speed is given. The calculation capacity of the machine with a diode bridge rectifier load is proposed. To achieve global searching, the integrated method with the improved real-coded genetic algorithm and the twodimensional finite element method (FEM) is introduced. Design results of the sample show that reactive power can be reduced by the method, and the converter capacity can be decreased to 1/3 of output rated power at the speed ratio of 1 : 3, thus reducing the volume and the mass of the inverter.
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.