The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previo...The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.展开更多
The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herei...The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.展开更多
A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were li...A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.展开更多
In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existi...In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existing tracked vehicle, a DCT structure was proposed. Matlab/Simulink was a dopted as a platform to develop the simulation model. The engine speed was controlled to follow the target speed as a launch strategy. Two control methods, a proportional integral derivative ( PID ) control method and a fuzzy control method, were proposed to control the engine throttle and oil pressure in order to track the target engine speed. Simulation results show that either the PID control or fuzzy control method can improve the starting performance compared with no loop control meth od. Fuzzy control method can lead a better starting quality compared with PID control method.展开更多
Wet dual clutch transmissions(W-DCTs) show overall benefits including excellent fuel efficiency,wide torque capacity range,long durability,driving comfort and sportiness.Many breakthroughs have been made to further im...Wet dual clutch transmissions(W-DCTs) show overall benefits including excellent fuel efficiency,wide torque capacity range,long durability,driving comfort and sportiness.Many breakthroughs have been made to further improve the fuel efficiency by design innovations and introductions of new hardware.Each W-DCT has its unique design and hardware.It demands the lubricant to provide excellent wet clutch friction performance and anti-shudder friction durability,good synchronizer friction performance and durability,high load-carrying ability,excellent bearing performance,strong anti-corrosion performance,high thermal and oxidative stability,excellent material compatibility,etc.Particularly,the requirement of the wet clutch friction performance in W-DCT is much more severe than conventional ATFs and CVTFs.We report here our latest W-DCTF technologies developed for different W-DCT applications.DCTF-1 was optimized for a two-sump W-DCT application with the clutch lining material of friction material A(FM-A).DCTF-1 shows high and stable dynamic friction,static friction,particularly,high quasi-static friction without any shudder tendency in GK tests.DCTF-2 was designed for a one-sump W-DCT application with the same clutch lining material of FM-A.DCTF-2 completes 42,000 cycles of the severe GTI chassis dynamometer vehicle test without any issues,which is comparable to the factory fill fluid DCTF-FF.DCTF-3 was developed for a one-sump W-DCT application with a different clutch lining material of FM-B.DCTF-3 shows high and stable dynamic friction in the severe newly developed SAE DCT test procedure.DCTF-3 also gives excellent LVFA durability of over 720 h in the JASO M349 test procedure on FM-B.展开更多
A new clutch configuration with dual diaphragm spring is proposed. It is proper designed for electric and hybrid powertrain system. With this design, the clutch engagement is controlled by current in electrornagnet co...A new clutch configuration with dual diaphragm spring is proposed. It is proper designed for electric and hybrid powertrain system. With this design, the clutch engagement is controlled by current in electrornagnet coil. For special characteristic of dual diaphragm spring, the clutch does not consume energy in steady state after engaging or disengaging. To validate the feasibility of this design, author builds the mathematical model and imports it into MATLAB Simulink. The simulation shows the behavior of clutch in different control strategies.展开更多
The title compound bis(1-(4-(dimethylamino)benzylidene)-4-phenylthiosemicar-bazato)-palladium(Ⅱ)(PdL2) was obtained by reacting 1-(4-(dimethylamino)benzylidene)-4-phenyl-thiosemicarbazide with dichloro...The title compound bis(1-(4-(dimethylamino)benzylidene)-4-phenylthiosemicar-bazato)-palladium(Ⅱ)(PdL2) was obtained by reacting 1-(4-(dimethylamino)benzylidene)-4-phenyl-thiosemicarbazide with dichlorobis(benzonitrile)palladium(Ⅱ) in methanol,and its structure was characterized by single-crystal X-ray diffraction.The crystal of PdL2 was obtained in dimethyl-formamide(DMF) solvent with solvent molecules involved in the cell and crystallizes in the monoclinic system,space group C2 with a = 18.485(15),b = 7.090(5),c = 17.595(11) ,β = 121.21(3)o,V = 1972(2) 3,Z = 2,Mr = 847.40,Dc = 1.427 g/cm3,μ = 0.624 mm-1,F(000) = 880,R = 0.0607 and wR = 0.1358.The Pd atom adopts a distorted square planar coordination geometry with two Pd-N and two Pd-S bonds.The ligand loses a proton from its tautomeric thiol form and coordinates to the Pd atom via mercapto sulfur and the imine nitrogen atom,which binds to palladium as bidentate N,S-donors forming five-membered chelate rings.The complex formed hydrogen bonding interaction with solvent DMF molecules from the hydrogen of phenylamine to the oxygen of DMF and several intramolecular hydrogen bonds.Pd(Ⅱ) perturbed ligand π-π* transition and metal-to-ligand charge transfer(MLCT) transition are observed in its electronic absorption spectra.The complex exhibits intraligand 1π-π*(IL) state and MLCT state dual fluorescent emissions in organic solvent at room temperature.展开更多
This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -...This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.展开更多
针对纯电动汽车两挡双离合自动变速器(two-speed dual-clutch transmission,2DCT)换挡控制模型及参数的不确定性和存在的未知干扰,提出了一种线性自抗扰(linear active disturbance rejection controller,LADRC)换挡控制策略。首先建立2...针对纯电动汽车两挡双离合自动变速器(two-speed dual-clutch transmission,2DCT)换挡控制模型及参数的不确定性和存在的未知干扰,提出了一种线性自抗扰(linear active disturbance rejection controller,LADRC)换挡控制策略。首先建立2DCT换挡过程动力学模型,并分析了换挡过程;然后考虑控制模型的不确定性及未知干扰,将LADRC控制器应用到换挡过程对期望角速度进行跟踪,并采用扩张状态观测器(extended state observer,ESO)对扰动进行实时估计,并加以补偿,最后与PID控制进行对比。仿真和实验结果表明,该控制器跟踪误差更小,鲁棒性强,能保证良好的换挡品质。展开更多
基金funding from National Natural Science Foundation of China(52103053,52102312)Huxiang Young Talents of Hunan Province(2022RC1004)+1 种基金Macao Young Scholars Program(AM2021011)Foundation of State Key Laboratory of Utilization of Woody Oil Resource(GZKF202126)。
文摘The development of aqueous battery with dual mechanisms is now arousing more and more interest.The dual mechanisms of Zn^(2+)(de)intercalation and I^(-)/I_(2)redox bring unexpected effects.Herein,differing from previous studies using Zn I_(2)additive,this work designs an aqueous Bi I_(3)-Zn battery with selfsupplied I^(-).Ex situ tests reveal the conversion of Bi I_(3)into Bi(discharge)and Bi OI(charge)at the 1st cycle and the dissolved I^(-)in electrolyte.The active I^(-)species enhances the specific capacity and discharge medium voltage of electrode as well as improves the generation of Zn dendrite and by-product.Furthermore,the porous hard carbon is introduced to enhance the electronic/ionic conductivity and adsorb iodine species,proven by experimental and theoretical studies.Accordingly,the well-designed Bi I_(3)-Zn battery delivers a high reversible capacity of 182 m A h g^(-1)at 0.2 A g^(-1),an excellent rate capability with 88 m A h g^(-1)at 10 A g^(-1),and an impressive cyclability with 63%capacity retention over 20 K cycles at 10 A g^(-1).An excellent electrochemical performance is obtained even at a high mass loading of 6 mg cm^(-2).Moreover,a flexible quasi-solid-state Bi I_(3)-Zn battery exhibits satisfactory battery performances.This work provides a new idea for designing high-performance aqueous battery with dual mechanisms.
基金supported by the National Natural Science Foundation of China(Nos.21203008,21975025,12274025)the Hainan Province Science and Technology Special Fund(Nos.ZDYF2021SHFZ232,ZDYF2023GXJS022)the Hainan Province Postdoctoral Science Foundation(No.300333)。
文摘The sulfide-based solid-state electrolytes(SEs)reactivity toward moisture and Li-metal are huge barriers that impede their large-scale manufactu ring and applications in all-solid-state lithium batteries(ASSLBs).Herein,we proposed an Al and O dual-doped strategy for Li_(3)PS_(4)SE to regulate the chemical/electrochemical stability of anionic PS_(4)^(3-)tetrahedra to mitigate structural hydrolysis and parasitic reactions at the SE/Li interface.The optimized Li_(3.08)A_(10.04)P_(0.96)S_(3.92)O_(0.08)SE presents the highestσLi+of 3.27 mS cm^(-1),which is~6.8 times higher than the pristine Li_(3)PS_(4)and excellently inhibits the structural hydrolysis for~25 min@25%humidity at RT.DFT calculations confirmed that the enhanced chemical stability was revealed to the intrinsically stable entities,e.g.,POS33-units.Moreover,Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE cycled stably in Li//Li symmetric cell over 1000 h@0.1 mA cm^(-2)/0.1 mA h cm^(-2),could be revealed to Li-Al alloy and Li_(2)Oat SE/Li interface impeding the growth of Li-dendrites during cycling.Resultantly,LNO@LCO/Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)/Li-In cell delivered initial discharge capacities of 129.8 mA h g^(-1)and 83.74%capacity retention over 300 cycles@0.2 C at RT.Moreover,the Li_(3.08)Al_(0.04)P_(0.96)S_(3.92)O_(0.08)SE presented>90%capacity retention over 200 and 300 cycles when the cell was tested with LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA)cathode material vs.5 and 10 mg cm^(-2)@RT.
基金Science and Technology Commission of Shanghai Municipality,China (No. 08dz1150401)
文摘A multi-domain collaborative simulation(MDCS) system for dual clutch transmission(DCT) was presented based on controller area network(CAN) bus.An interface card of CAN bus was designed,in which MDCS subsystems were linked as the nodes according to the interface mode of MDCS.A DCT simulation model was established based on Matlab/Simdriveline,whose running process was accurately controlled by the designed control system.The playback system of vehicle state(VPS) was proposed whose input was the road-test data,with a real vehicle test environment for the development of transmission control unit(TCU) being provided.A DCT kinematic system model was set up,and the running status of DCT parts could be displayed in real time.The functions of MDCS were verified based on the extra-urban driving cycle(EUDC) and the vehicle road-test data respectively.The results show the functions of MDCS are accomplished,and the unified supporting platform for the development of TCU is achieved by MDCS.
基金Supported by Defense Advanced Research Support Project(62301030303)111 Project(B08043)
文摘In order to study the application of dual clutch transmission (DCT) on tracked vehicles, a simulation moclel and two control methods were performed for starting analysis. Based on a certain transmission of an existing tracked vehicle, a DCT structure was proposed. Matlab/Simulink was a dopted as a platform to develop the simulation model. The engine speed was controlled to follow the target speed as a launch strategy. Two control methods, a proportional integral derivative ( PID ) control method and a fuzzy control method, were proposed to control the engine throttle and oil pressure in order to track the target engine speed. Simulation results show that either the PID control or fuzzy control method can improve the starting performance compared with no loop control meth od. Fuzzy control method can lead a better starting quality compared with PID control method.
文摘Wet dual clutch transmissions(W-DCTs) show overall benefits including excellent fuel efficiency,wide torque capacity range,long durability,driving comfort and sportiness.Many breakthroughs have been made to further improve the fuel efficiency by design innovations and introductions of new hardware.Each W-DCT has its unique design and hardware.It demands the lubricant to provide excellent wet clutch friction performance and anti-shudder friction durability,good synchronizer friction performance and durability,high load-carrying ability,excellent bearing performance,strong anti-corrosion performance,high thermal and oxidative stability,excellent material compatibility,etc.Particularly,the requirement of the wet clutch friction performance in W-DCT is much more severe than conventional ATFs and CVTFs.We report here our latest W-DCTF technologies developed for different W-DCT applications.DCTF-1 was optimized for a two-sump W-DCT application with the clutch lining material of friction material A(FM-A).DCTF-1 shows high and stable dynamic friction,static friction,particularly,high quasi-static friction without any shudder tendency in GK tests.DCTF-2 was designed for a one-sump W-DCT application with the same clutch lining material of FM-A.DCTF-2 completes 42,000 cycles of the severe GTI chassis dynamometer vehicle test without any issues,which is comparable to the factory fill fluid DCTF-FF.DCTF-3 was developed for a one-sump W-DCT application with a different clutch lining material of FM-B.DCTF-3 shows high and stable dynamic friction in the severe newly developed SAE DCT test procedure.DCTF-3 also gives excellent LVFA durability of over 720 h in the JASO M349 test procedure on FM-B.
文摘A new clutch configuration with dual diaphragm spring is proposed. It is proper designed for electric and hybrid powertrain system. With this design, the clutch engagement is controlled by current in electrornagnet coil. For special characteristic of dual diaphragm spring, the clutch does not consume energy in steady state after engaging or disengaging. To validate the feasibility of this design, author builds the mathematical model and imports it into MATLAB Simulink. The simulation shows the behavior of clutch in different control strategies.
基金supported by the National Basic Research Program of China (973 Program,2007CB815301)NSF (No. 20721001)the Science & Technology Innovation Project of Xiamen University (No. K70025)
文摘The title compound bis(1-(4-(dimethylamino)benzylidene)-4-phenylthiosemicar-bazato)-palladium(Ⅱ)(PdL2) was obtained by reacting 1-(4-(dimethylamino)benzylidene)-4-phenyl-thiosemicarbazide with dichlorobis(benzonitrile)palladium(Ⅱ) in methanol,and its structure was characterized by single-crystal X-ray diffraction.The crystal of PdL2 was obtained in dimethyl-formamide(DMF) solvent with solvent molecules involved in the cell and crystallizes in the monoclinic system,space group C2 with a = 18.485(15),b = 7.090(5),c = 17.595(11) ,β = 121.21(3)o,V = 1972(2) 3,Z = 2,Mr = 847.40,Dc = 1.427 g/cm3,μ = 0.624 mm-1,F(000) = 880,R = 0.0607 and wR = 0.1358.The Pd atom adopts a distorted square planar coordination geometry with two Pd-N and two Pd-S bonds.The ligand loses a proton from its tautomeric thiol form and coordinates to the Pd atom via mercapto sulfur and the imine nitrogen atom,which binds to palladium as bidentate N,S-donors forming five-membered chelate rings.The complex formed hydrogen bonding interaction with solvent DMF molecules from the hydrogen of phenylamine to the oxygen of DMF and several intramolecular hydrogen bonds.Pd(Ⅱ) perturbed ligand π-π* transition and metal-to-ligand charge transfer(MLCT) transition are observed in its electronic absorption spectra.The complex exhibits intraligand 1π-π*(IL) state and MLCT state dual fluorescent emissions in organic solvent at room temperature.
文摘This paper points out that a successful numerical simulation is to construct a correct conceptional model which is very dose to the natural condition. A new model, two dimensional coupled three dimensional model (2D -3D ) is presented in the Present paper,which is the most suitable one for the dual - structured - aquifer system. An example of Wenyinghu area is shown.By using the 2D-3D model, a satisfied result of the simulated area is achieved.
文摘针对纯电动汽车两挡双离合自动变速器(two-speed dual-clutch transmission,2DCT)换挡控制模型及参数的不确定性和存在的未知干扰,提出了一种线性自抗扰(linear active disturbance rejection controller,LADRC)换挡控制策略。首先建立2DCT换挡过程动力学模型,并分析了换挡过程;然后考虑控制模型的不确定性及未知干扰,将LADRC控制器应用到换挡过程对期望角速度进行跟踪,并采用扩张状态观测器(extended state observer,ESO)对扰动进行实时估计,并加以补偿,最后与PID控制进行对比。仿真和实验结果表明,该控制器跟踪误差更小,鲁棒性强,能保证良好的换挡品质。