期刊文献+
共找到153篇文章
< 1 2 8 >
每页显示 20 50 100
A multi-source information fusion layer counting method for penetration fuze based on TCN-LSTM
1
作者 Yili Wang Changsheng Li Xiaofeng Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期463-474,共12页
When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ... When employing penetration ammunition to strike multi-story buildings,the detection methods using acceleration sensors suffer from signal aliasing,while magnetic detection methods are susceptible to interference from ferromagnetic materials,thereby posing challenges in accurately determining the number of layers.To address this issue,this research proposes a layer counting method for penetration fuze that incorporates multi-source information fusion,utilizing both the temporal convolutional network(TCN)and the long short-term memory(LSTM)recurrent network.By leveraging the strengths of these two network structures,the method extracts temporal and high-dimensional features from the multi-source physical field during the penetration process,establishing a relationship between the multi-source physical field and the distance between the fuze and the target plate.A simulation model is developed to simulate the overload and magnetic field of a projectile penetrating multiple layers of target plates,capturing the multi-source physical field signals and their patterns during the penetration process.The analysis reveals that the proposed multi-source fusion layer counting method reduces errors by 60% and 50% compared to single overload layer counting and single magnetic anomaly signal layer counting,respectively.The model's predictive performance is evaluated under various operating conditions,including different ratios of added noise to random sample positions,penetration speeds,and spacing between target plates.The maximum errors in fuze penetration time predicted by the three modes are 0.08 ms,0.12 ms,and 0.16 ms,respectively,confirming the robustness of the proposed model.Moreover,the model's predictions indicate that the fitting degree for large interlayer spacings is superior to that for small interlayer spacings due to the influence of stress waves. 展开更多
关键词 Penetration fuze Temporal convolutional network(TCN) long short-term memory(lstm) Layer counting Multi-source fusion
下载PDF
Infrasound Event Classification Fusion Model Based on Multiscale SE-CNN and BiLSTM
2
作者 Hongru Li Xihai Li +3 位作者 Xiaofeng Tan Chao Niu Jihao Liu Tianyou Liu 《Applied Geophysics》 SCIE CSCD 2024年第3期579-592,620,共15页
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al... The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model. 展开更多
关键词 infrasound classification channel attention convolution neural network bidirectional long short-term memory network multiscale feature fusion
下载PDF
Device Anomaly Detection Algorithm Based on Enhanced Long Short-Term Memory Network
3
作者 罗辛 陈静 +1 位作者 袁德鑫 杨涛 《Journal of Donghua University(English Edition)》 CAS 2023年第5期548-559,共12页
The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-... The problems in equipment fault detection include data dimension explosion,computational complexity,low detection accuracy,etc.To solve these problems,a device anomaly detection algorithm based on enhanced long short-term memory(LSTM)is proposed.The algorithm first reduces the dimensionality of the device sensor data by principal component analysis(PCA),extracts the strongly correlated variable data among the multidimensional sensor data with the lowest possible information loss,and then uses the enhanced stacked LSTM to predict the extracted temporal data,thus improving the accuracy of anomaly detection.To improve the efficiency of the anomaly detection,a genetic algorithm(GA)is used to adjust the magnitude of the enhancements made by the LSTM model.The validation of the actual data from the pumps shows that the algorithm has significantly improved the recall rate and the detection speed of device anomaly detection,with the recall rate of 97.07%,which indicates that the algorithm is effective and efficient for device anomaly detection in the actual production environment. 展开更多
关键词 anomaly detection production equipment genetic algorithm(GA) long short-term memory(lstm) principal component analysis(PCA)
下载PDF
Multi-Modality and Feature Fusion-Based COVID-19 Detection Through Long Short-Term Memory
4
作者 Noureen Fatima Rashid Jahangir +3 位作者 Ghulam Mujtaba Adnan Akhunzada Zahid Hussain Shaikh Faiza Qureshi 《Computers, Materials & Continua》 SCIE EI 2022年第9期4357-4374,共18页
The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse tr... The Coronavirus Disease 2019(COVID-19)pandemic poses the worldwide challenges surpassing the boundaries of country,religion,race,and economy.The current benchmark method for the detection of COVID-19 is the reverse transcription polymerase chain reaction(RT-PCR)testing.Nevertheless,this testing method is accurate enough for the diagnosis of COVID-19.However,it is time-consuming,expensive,expert-dependent,and violates social distancing.In this paper,this research proposed an effective multimodality-based and feature fusion-based(MMFF)COVID-19 detection technique through deep neural networks.In multi-modality,we have utilized the cough samples,breathe samples and sound samples of healthy as well as COVID-19 patients from publicly available COSWARA dataset.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.Several useful features were extracted from the aforementioned modalities that were then fed as an input to long short-term memory recurrent neural network algorithms for the classification purpose.Extensive set of experimental analyses were performed to evaluate the performance of our proposed approach.The experimental results showed that our proposed approach outperformed compared to four baseline approaches published recently.We believe that our proposed technique will assists potential users to diagnose the COVID-19 without the intervention of any expert in minimum amount of time. 展开更多
关键词 Covid-19 detection long short-term memory feature fusion deep learning audio classification
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究 被引量:2
5
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
利用长短期记忆网络LSTM对赤道太平洋海表面温度短期预报
6
作者 张桃 林鹏飞 +6 位作者 刘海龙 郑伟鹏 王鹏飞 徐天亮 李逸文 刘娟 陈铖 《大气科学》 CSCD 北大核心 2024年第2期745-754,共10页
海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。... 海表面温度作为海洋中一个最重要的变量,对全球气候、海洋生态等有很大的影响,因此十分有必要对海表面温度(SST)进行预报。深度学习具备高效的数据处理能力,但目前利用深度学习对整个赤道太平洋的SST短期预报及预报技巧的研究仍较少。本文基于最优插值海表面温度(OISST)的日平均SST数据,利用长短期记忆(LSTM)网络构建了未来10天赤道太平洋(10°S~10°N,120°E~80°W)SST的逐日预报模型。LSTM预报模型利用1982~2010年的观测数据进行训练,2011~2020年的观测数据作为初值进行预报和检验评估。结果表明:赤道太平洋东部地区预报均方根误差(RMSE)大于中、西部,东部预报第1天RMSE为0.6℃左右,而中、西部均小于0.3℃。在不同的年际变化位相,预报RMSE在拉尼娜出现时期最大,正常年份次之,厄尔尼诺时期最小,RMSE在拉尼娜时期比在厄尔尼诺时期可达20%。预报偏差整体表现为东正、西负。相关预报技巧上,中部最好,可预报天数基本为10天以上,赤道冷舌附近可预报天数为4~7天,赤道西边部分地区可预报天数为3天。预报模型在赤道太平洋东部地区各月份预报技巧普遍低于西部地区,相比较而言各区域10、11月份预报技巧最低。总的来说,基于LSTM构建的SST预报模型能很好地捕捉到SST在时序上的演变特征,在不同案例中预报表现良好。同时该预报模型依靠数据驱动,能迅速且较好地预报未来10天以内的日平均SST的短期变化。 展开更多
关键词 海表面温度 lstm (long short-term memory) 短期预报 赤道太平洋
下载PDF
基于Bi-TCN-LSTM的滚动轴承剩余使用寿命预测方法 被引量:2
7
作者 高萌 鲁玉军 《轻工机械》 CAS 2024年第3期66-73,79,共9页
由于时间卷积网络(temporal convolutional networks, TCN)感知场不足,轴承的关键退化信息常常被忽略,导致轴承剩余使用寿命(remaining useful life, RUL)预测结果不佳;而长短期记忆网络(long short-term memory, LSTM)随着数据量及序... 由于时间卷积网络(temporal convolutional networks, TCN)感知场不足,轴承的关键退化信息常常被忽略,导致轴承剩余使用寿命(remaining useful life, RUL)预测结果不佳;而长短期记忆网络(long short-term memory, LSTM)随着数据量及序列长度的增加,长期依赖问题仍可能得不到很好解决。因此,课题组提出了一种基于双向时间卷积网络和长短期记忆(Bi-TCN-LSTM)的滚动轴承寿命预测方法。首先对多传感器数据进行归一化并做融合处理,然后采用Bi-TCN-LSTM进行数据特征提取与深度学习,其中对TCN模块引入卷积注意力机制(convolutional attention module, CAM),将LSTM的3个门简化为1个门,有效加快了预测模型学习的速度并提高了预测模型的精确度;采用IEEE PHM 2012轴承数据集作为实验数据集,进行了RUL预测实验。结果表明:与其他先进的预测模型相比,Bi-TCN-LSTM方法预测结果的误差相对较低,预测性能较好。 展开更多
关键词 滚动轴承 剩余使用寿命预测 多传感器融合 时间卷积网络 长短期记忆网络
下载PDF
A real-time prediction method for tunnel boring machine cutter-head torque using bidirectional long short-term memory networks optimized by multi-algorithm 被引量:6
8
作者 Xing Huang Quantai Zhang +4 位作者 Quansheng Liu Xuewei Liu Bin Liu Junjie Wang Xin Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期798-812,共15页
Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented... Based on data from the Jilin Water Diversion Tunnels from the Songhua River(China),an improved and real-time prediction method optimized by multi-algorithm for tunnel boring machine(TBM)cutter-head torque is presented.Firstly,a function excluding invalid and abnormal data is established to distinguish TBM operating state,and a feature selection method based on the SelectKBest algorithm is proposed.Accordingly,ten features that are most closely related to the cutter-head torque are selected as input variables,which,in descending order of influence,include the sum of motor torque,cutter-head power,sum of motor power,sum of motor current,advance rate,cutter-head pressure,total thrust force,penetration rate,cutter-head rotational velocity,and field penetration index.Secondly,a real-time cutterhead torque prediction model’s structure is developed,based on the bidirectional long short-term memory(BLSTM)network integrating the dropout algorithm to prevent overfitting.Then,an algorithm to optimize hyperparameters of model based on Bayesian and cross-validation is proposed.Early stopping and checkpoint algorithms are integrated to optimize the training process.Finally,a BLSTMbased real-time cutter-head torque prediction model is developed,which fully utilizes the previous time-series tunneling information.The mean absolute percentage error(MAPE)of the model in the verification section is 7.3%,implying that the presented model is suitable for real-time cutter-head torque prediction.Furthermore,an incremental learning method based on the above base model is introduced to improve the adaptability of the model during the TBM tunneling.Comparison of the prediction performance between the base and incremental learning models in the same tunneling section shows that:(1)the MAPE of the predicted results of the BLSTM-based real-time cutter-head torque prediction model remains below 10%,and both the coefficient of determination(R^(2))and correlation coefficient(r)between measured and predicted values exceed 0.95;and(2)the incremental learning method is suitable for realtime cutter-head torque prediction and can effectively improve the prediction accuracy and generalization capacity of the model during the excavation process. 展开更多
关键词 Tunnel boring machine(TBM) Real-time cutter-head torque prediction Bidirectional long short-term memory (Blstm) Bayesian optimization Multi-algorithm fusion optimization Incremental learning
下载PDF
Navigation jamming signal recognition based on long short-term memory neural networks 被引量:3
9
作者 FU Dong LI Xiangjun +2 位作者 MOU Weihua MA Ming OU Gang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第4期835-844,共10页
This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces ... This paper introduces the time-frequency analyzed long short-term memory(TF-LSTM) neural network method for jamming signal recognition over the Global Navigation Satellite System(GNSS) receiver. The method introduces the long shortterm memory(LSTM) neural network into the recognition algorithm and combines the time-frequency(TF) analysis for signal preprocessing. Five kinds of navigation jamming signals including white Gaussian noise(WGN), pulse jamming, sweep jamming, audio jamming, and spread spectrum jamming are used as input for training and recognition. Since the signal parameters and quantity are unknown in the actual scenario, this work builds a data set containing multiple kinds and parameters jamming to train the TF-LSTM. The performance of this method is evaluated by simulations and experiments. The method has higher recognition accuracy and better robustness than the existing methods, such as LSTM and the convolutional neural network(CNN). 展开更多
关键词 satellite navigation jamming recognition time-frequency(TF)analysis long short-term memory(lstm)
下载PDF
Multi-head attention-based long short-term memory model for speech emotion recognition 被引量:1
10
作者 Zhao Yan Zhao Li +3 位作者 Lu Cheng Li Sunan Tang Chuangao Lian Hailun 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期103-109,共7页
To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model ... To fully make use of information from different representation subspaces,a multi-head attention-based long short-term memory(LSTM)model is proposed in this study for speech emotion recognition(SER).The proposed model uses frame-level features and takes the temporal information of emotion speech as the input of the LSTM layer.Here,a multi-head time-dimension attention(MHTA)layer was employed to linearly project the output of the LSTM layer into different subspaces for the reduced-dimension context vectors.To provide relative vital information from other dimensions,the output of MHTA,the output of feature-dimension attention,and the last time-step output of LSTM were utilized to form multiple context vectors as the input of the fully connected layer.To improve the performance of multiple vectors,feature-dimension attention was employed for the all-time output of the first LSTM layer.The proposed model was evaluated on the eNTERFACE and GEMEP corpora,respectively.The results indicate that the proposed model outperforms LSTM by 14.6%and 10.5%for eNTERFACE and GEMEP,respectively,proving the effectiveness of the proposed model in SER tasks. 展开更多
关键词 speech emotion recognition long short-term memory(lstm) multi-head attention mechanism frame-level features self-attention
下载PDF
基于通道融合的Res-CNN-LSTM电网虚假数据注入攻击检测 被引量:1
11
作者 方正刚 《电气技术》 2024年第3期11-17,62,共8页
针对电力系统的网络攻击事件越来越多,信息物理安全问题已经引发电力公司和学术界的高度关注。为了能够正确检测电网虚假数据注入攻击,本文提出一种基于残差神经网络(ResNet)结构的一维卷积神经网络(1DCNN)和长短期记忆(LSTM)网络多通... 针对电力系统的网络攻击事件越来越多,信息物理安全问题已经引发电力公司和学术界的高度关注。为了能够正确检测电网虚假数据注入攻击,本文提出一种基于残差神经网络(ResNet)结构的一维卷积神经网络(1DCNN)和长短期记忆(LSTM)网络多通道融合网络模型,简称通道融合的Res-CNN-LSTM网络模型。该神经网络算法利用1DCNN和LSTM对时间序列信息的高效提取能力,将不同通道上提取的信息进行融合,进一步加强了数据特征的提取效果,同时网络模型主体采用残差跳跃连接的结构来解决神经网络在训练过程中的过拟合问题;在IEEE-14和IEEE-118节点测试系统进行模型仿真实验,并对比其他神经网络模型,结果验证了本文所提方法的有效性和准确性。 展开更多
关键词 神经网络 多通道数据融合 攻击检测 深度学习 长短期记忆(lstm)神经网络
下载PDF
A Complex Fuzzy LSTM Network for Temporal-Related Forecasting Problems
12
作者 Nguyen Tho Thong Nguyen Van Quyet +2 位作者 Cu Nguyen Giap Nguyen Long Giang Luong Thi Hong Lan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4173-4196,共24页
Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communicat... Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communication technologies.Mining the time series data including time series prediction has many practical applications.Many new techniques were developed for use with various types of time series data in the prediction problem.Among those,this work suggests a unique strategy to enhance predicting quality on time-series datasets that the timecycle matters by fusing deep learning methods with fuzzy theory.In order to increase forecasting accuracy on such type of time-series data,this study proposes integrating deep learning approaches with fuzzy logic.Particularly,it combines the long short-termmemory network with the complex fuzzy set theory to create an innovative complex fuzzy long short-term memory model(CFLSTM).The proposed model adds a meaningful representation of the time cycle element thanks to a complex fuzzy set to advance the deep learning long short-term memory(LSTM)technique to have greater power for processing time series data.Experiments on standard common data sets and real-world data sets published in the UCI Machine Learning Repository demonstrated the proposedmodel’s utility compared to other well-known forecasting models.The results of the comparisons supported the applicability of our proposed strategy for forecasting time series data. 展开更多
关键词 Complex fuzzy set long short-term memory(lstm) CFlstm T-CFlstm
下载PDF
Real-time UAV path planning based on LSTM network
13
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
下载PDF
Track correlation algorithm based on CNN-LSTM for swarm targets
14
作者 CHEN Jinyang WANG Xuhua CHEN Xian 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期417-429,共13页
The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms... The rapid development of unmanned aerial vehicle(UAV) swarm, a new type of aerial threat target, has brought great pressure to the air defense early warning system. At present, most of the track correlation algorithms only use part of the target location, speed, and other information for correlation.In this paper, the artificial neural network method is used to establish the corresponding intelligent track correlation model and method according to the characteristics of swarm targets.Precisely, a route correlation method based on convolutional neural networks (CNN) and long short-term memory (LSTM)Neural network is designed. In this model, the CNN is used to extract the formation characteristics of UAV swarm and the spatial position characteristics of single UAV track in the formation,while the LSTM is used to extract the time characteristics of UAV swarm. Experimental results show that compared with the traditional algorithms, the algorithm based on CNN-LSTM neural network can make full use of multiple feature information of the target, and has better robustness and accuracy for swarm targets. 展开更多
关键词 track correlation correlation accuracy rate swarm target convolutional neural network(CNN) long short-term memory(lstm)neural network
下载PDF
基于LSTM-AEKF算法的锂离子电池SOC估计
15
作者 王立洋 徐以蒙 《中国新技术新产品》 2024年第9期1-5,共5页
针对扩展卡尔曼滤波(Extended Kalman filter,EKF)算法与长短期记忆网络(Long Short-Term Memory,LSTM)不能准确估计锂离子电池荷电状态(State of Charge,SOC)的问题,本文提出了一种基于二阶戴维宁(Thevenin)的等效电路模型,采用自适应... 针对扩展卡尔曼滤波(Extended Kalman filter,EKF)算法与长短期记忆网络(Long Short-Term Memory,LSTM)不能准确估计锂离子电池荷电状态(State of Charge,SOC)的问题,本文提出了一种基于二阶戴维宁(Thevenin)的等效电路模型,采用自适应扩展卡尔曼滤波(Adaptve Extended Kalman filter,AEKF)与LSTM相结合的SOC估计算法,即LSTM-AEKF算法。在二阶RC等效电路模型的基础上建立整数阶模型,并采用EKF算法辨识模型参数,采用LSTM-AEKF算法估计SOC,与AEKF算法、LSTM算法进行比较。根据马里兰大学公开数据集进行测试,结果表明,与传统方法相比,LSTM-AEKF算法估计SOC的平均绝对误差(Mean Absolute Error,MAE)与均方根误差(Root Mean Square Error,RMSE)分别下降了1.23%、1.5%,基于二阶RC模型的LSTM-AEKF算法可以有效估计SOC。 展开更多
关键词 锂离子电池 SOC估计 二阶Thevenin等效模型 长短期记忆网络(long short-term memory lstm) 自适应扩展卡尔曼滤波
下载PDF
基于改进CNN-LSTM融合的僵尸网络识别方法
16
作者 卢法权 陈丹伟 《计算机应用与软件》 北大核心 2024年第3期328-335,共8页
P2P及fast-flux等技术的出现使僵尸网络隐蔽性大大增强。传统人工提取特征的识别方法愈发困难并且识别精度低。该文设计一种新的基于CNN及LSTM融合网络结构,使用改进激活函数和网络结构的卷积神经网络检测空间特征,并使用长短时记忆网... P2P及fast-flux等技术的出现使僵尸网络隐蔽性大大增强。传统人工提取特征的识别方法愈发困难并且识别精度低。该文设计一种新的基于CNN及LSTM融合网络结构,使用改进激活函数和网络结构的卷积神经网络检测空间特征,并使用长短时记忆网络检测时序特征,将两种特征并联融合用于识别僵尸网络。实验表明,该方法在精度和召回率等方面可满足僵尸网络识别需求。 展开更多
关键词 僵尸网络 卷积神经网络 长短时记忆网络 特征并联融合 激活函数
下载PDF
基于LSTM的PCBA批次质量预测
17
作者 王德新 俞胜平 +2 位作者 徐昌国 冉海周 苏玮 《控制工程》 CSCD 北大核心 2024年第3期497-502,共6页
PCBA生产手工插件线产品质量易受人工操作水平等因素影响,且多个产品质量检测环节均在手工插件线末端,导致难以在生产过程中及时把控产品质量。为了及早发现手工插件线的产品质量问题,提出了基于LSTM的PCBA产品批次质量多步预测控制策略... PCBA生产手工插件线产品质量易受人工操作水平等因素影响,且多个产品质量检测环节均在手工插件线末端,导致难以在生产过程中及时把控产品质量。为了及早发现手工插件线的产品质量问题,提出了基于LSTM的PCBA产品批次质量多步预测控制策略,将手工插件线上的FCT质量检测数据经过处理后作为模型的输入特征,建立了基于LSTM的PCBA批次质量预测模型。最后,将所建立的预测模型与BP、RNN和SVR模型以及目前在数据特征分析拟合上表现较好的CNN模型进行比较,仿真结果表明,所提出的模型在电子产品质量的预测中具有更好的效果,可以为PCBA的质量调控提供指导。 展开更多
关键词 组装印刷电路板 质量预测 长短期记忆网络 双列直插封装
下载PDF
Wind Speed Prediction Based on Improved VMD-BP-CNN-LSTM Model
18
作者 Chaoming Shu Bin Qin Xin Wang 《Journal of Power and Energy Engineering》 2024年第1期29-43,共15页
Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind s... Amid the randomness and volatility of wind speed, an improved VMD-BP-CNN-LSTM model for short-term wind speed prediction was proposed to assist in power system planning and operation in this paper. Firstly, the wind speed time series data was processed using Variational Mode Decomposition (VMD) to obtain multiple frequency components. Then, each individual frequency component was channeled into a combined prediction framework consisting of BP neural network (BPNN), Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) after the execution of differential and normalization operations. Thereafter, the predictive outputs for each component underwent integration through a fully-connected neural architecture for data fusion processing, resulting in the final prediction. The VMD decomposition technique was introduced in a generalized CNN-LSTM prediction model;a BPNN model was utilized to predict high-frequency components obtained from VMD, and incorporated a fully connected neural network for data fusion of individual component predictions. Experimental results demonstrated that the proposed improved VMD-BP-CNN-LSTM model outperformed other combined prediction models in terms of prediction accuracy, providing a solid foundation for optimizing the safe operation of wind farms. 展开更多
关键词 Wind Speed Forecast long short-term memory Network BP Neural Network Variational Mode Decomposition Data fusion
下载PDF
Deep Learning-Based Stock Price Prediction Using LSTM Model
19
作者 Jiayi Mao Zhiyong Wang 《Proceedings of Business and Economic Studies》 2024年第5期176-185,共10页
The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the ... The stock market is a vital component of the broader financial system,with its dynamics closely linked to economic growth.The challenges associated with analyzing and forecasting stock prices have persisted since the inception of financial markets.By examining historical transaction data,latent opportunities for profit can be uncovered,providing valuable insights for both institutional and individual investors to make more informed decisions.This study focuses on analyzing historical transaction data from four banks to predict closing price trends.Various models,including decision trees,random forests,and Long Short-Term Memory(LSTM)networks,are employed to forecast stock price movements.Historical stock transaction data serves as the input for training these models,which are then used to predict upward or downward stock price trends.The study’s empirical results indicate that these methods are effective to a degree in predicting stock price movements.The LSTM-based deep neural network model,in particular,demonstrates a commendable level of predictive accuracy.This conclusion is reached following a thorough evaluation of model performance,highlighting the potential of LSTM models in stock market forecasting.The findings offer significant implications for advancing financial forecasting approaches,thereby improving the decision-making capabilities of investors and financial institutions. 展开更多
关键词 Autoregressive integrated moving average(ARIMA)model long short-term memory(lstm)network Forecasting Stock market
下载PDF
State of Health Estimation of Lithium-Ion Batteries Using Support Vector Regression and Long Short-Term Memory
20
作者 Inioluwa Obisakin Chikodinaka Vanessa Ekeanyanwu 《Open Journal of Applied Sciences》 CAS 2022年第8期1366-1382,共17页
Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate e... Lithium-ion batteries are the most widely accepted type of battery in the electric vehicle industry because of some of their positive inherent characteristics. However, the safety problems associated with inaccurate estimation and prediction of the state of health of these batteries have attracted wide attention due to the adverse negative effect on vehicle safety. In this paper, both machine and deep learning models were used to estimate the state of health of lithium-ion batteries. The paper introduces the definition of battery health status and its importance in the electric vehicle industry. Based on the data preprocessing and visualization analysis, three features related to actual battery capacity degradation are extracted from the data. Two learning models, SVR and LSTM were employed for the state of health estimation and their respective results are compared in this paper. The mean square error and coefficient of determination were the two metrics for the performance evaluation of the models. The experimental results indicate that both models have high estimation results. However, the metrics indicated that the SVR was the overall best model. 展开更多
关键词 Support Vector Regression (SVR) long short-term memory (lstm) Network State of Health (SOH) Estimation
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部