In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of ...In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.展开更多
Multi-dimensional nonlinear knapsack problems are often encountered in resource allocation, industrial planning and computer networks. In this paper, a surrogate dual method was proposed for solving this class of prob...Multi-dimensional nonlinear knapsack problems are often encountered in resource allocation, industrial planning and computer networks. In this paper, a surrogate dual method was proposed for solving this class of problems. Multiply constrained problem was relaxed to a singly constrained problem by using the surrogate technique. To compute tighter bounds of the primal problem, the cutting plane method was used to solve the surrogate dual problem, where the surrogate relaxation problem was solved by the 0-1 linearization method. The domain cut technique was employed to eliminate the duality gap and thus to guarantee the convergence of tile algorithm. Numerical results were reported for large-scale multi-dimensional nonlinear knapsack problems.展开更多
A series of problems in mechanics and physics are governed by the ordinary Poisson equation which demands linearity,isotropy,and material homo- geneity.In this paper a generalization with respect to nonlinearity,aniso...A series of problems in mechanics and physics are governed by the ordinary Poisson equation which demands linearity,isotropy,and material homo- geneity.In this paper a generalization with respect to nonlinearity,anisotropy,and inhomogeneity is made.Starting from the canonical basic equations in the primal and dual formulation respectively we derive systematically the corresponding generalized variational principles;under certain conditions they can be extended to so called complementary extremum principles allowing for global bounds.For simplicity a restriction to two dimensional problems is made,including twice-connected domains.展开更多
In this paper, a class of nonsmooth multiobjective programming problems is considered. We introduce the new concept of invex of order??type II for nondifferentiable locally Lipschitz functions using the tools of Clark...In this paper, a class of nonsmooth multiobjective programming problems is considered. We introduce the new concept of invex of order??type II for nondifferentiable locally Lipschitz functions using the tools of Clarke subdifferential. The new functions are used to derive the sufficient optimality condition for a class of nonsmooth multiobjective programming problems. Utilizing the sufficient optimality conditions, weak and strong duality theorems are established for Wolfe type duality model.展开更多
In this paper,we consider nonlinear infinity-norm minimization problems.We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed li...In this paper,we consider nonlinear infinity-norm minimization problems.We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed linear and nonlinear infinity- norm minimization problems.Numerical results are presented.展开更多
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke...The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.展开更多
develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining...develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.展开更多
The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite co...The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.展开更多
With the rapid development of the individualized demand market,the demand for manufacturing flexibility has increased over time.As a result,a cell manufacturing system suitable for many varieties and small batches has...With the rapid development of the individualized demand market,the demand for manufacturing flexibility has increased over time.As a result,a cell manufacturing system suitable for many varieties and small batches has been produced.With the goal of minimizing the area and logistics handling volume,and considering the arrangement order of facilities and channel constraints,a mathematical model was established,and the problem was solved by improved NSGA-II.After non-dominated sorting,traditional NSGA-II will cross-operate the individuals with the best sorting to generate new individuals.Such a selection strategy is extremely easy to fall into the local optimal solution.The improved NSGA-II is to improve the original selection operation,which is to select the first half of the excellent individuals in the non-dominated sorting into the cross operation,and then select the last sorted ones of the remaining individuals into the cross operation,and combine the best and the worst ones into the cross operation.Finally,an example is given to simulate and improve the solution of NSGA-II and NSGA-II.The simulation results indicate that the improved NSGA-II population shows more obvious diversity,it is easier to jump out of the local optimal solution than NSGA-II,and the satisfactory layout scheme of manufacturing cells is obtained.Therefore,it is more effective to use improved NSGA-II to solve the problem of manufacturing cell layout.展开更多
In this article, we propose efficient methods for solving two stage transshipment problems. Transshipment problem is the special case of Minimum cost flow problem in which arc capacities are infinite. We start by prop...In this article, we propose efficient methods for solving two stage transshipment problems. Transshipment problem is the special case of Minimum cost flow problem in which arc capacities are infinite. We start by proposing a novel problem formulation for a two stage transshipment problem. Later, special structure of our problem formulation is utilized to devise two dual based heuristics solutions with computational complexity of O (n2), and O (n3) respectively. These methods are motivated by the methods developed by Sharma and Saxena [1], Sinha and Sharma [2]. Our methods differ in the initialization and the subsequent variation of the dual variables associated with the transshipment nodes along the shortest path. Lastly, a method is proposed to extract a very good primal solution from the given dual solutions with a computational complexity of O (n2). Efficacy of these methods is demonstrated by our numerical analysis on 200 random problems.展开更多
The stochastic dual dynamic programming (SDDP) algorithm is becoming increasingly used. In this paper we present analysis of different methods of lattice construction for SDDP exemplifying a realistic variant of the n...The stochastic dual dynamic programming (SDDP) algorithm is becoming increasingly used. In this paper we present analysis of different methods of lattice construction for SDDP exemplifying a realistic variant of the newsvendor problem, incorporating storage of production. We model several days of work and compare the profits realized using different methods of the lattice construction and the corresponding computer time spent in lattice construction. Our case differs from the known one because we consider not only a multidimensional but also a multistage case with stage dependence. We construct scenario lattice for different Markov processes which play a crucial role in stochastic modeling. The novelty of our work is comparing different methods of scenario lattice construction. We considered a realistic variant of the newsvendor problem. The results presented in this article show that the Voronoi method slightly outperforms others, but the k-means method is much faster overall.展开更多
In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.
文摘In classical nonlinear programming, it is a general method of developing optimality conditions that a nonlinear programming problem is linearized as a linear programming problem by using first order approximations of the functions at a given feasible point. The linearized procedure for differentiable nonlinear programming problems can be naturally generalized to the quasi differential case. As in classical case so called constraint qualifications have to be imposed on the constraint functions to guarantee that for a given local minimizer of the original problem the nullvector is an optimal solution of the corresponding 'quasilinearized' problem. In this paper, constraint qualifications for inequality constrained quasi differentiable programming problems of type min {f(x)|g(x)≤0} are considered, where f and g are qusidifferentiable functions in the sense of Demyanov. Various constraint qualifications for this problem are presented and a new one is proposed. The relations among these conditions are investigated. Moreover, a Wolf dual problem for this problem is introduced, and the corresponding dual theorems are given.
基金partially supported by the National Natural Science Foundation of China (Grant Nos.10271073, 10571116)
文摘Multi-dimensional nonlinear knapsack problems are often encountered in resource allocation, industrial planning and computer networks. In this paper, a surrogate dual method was proposed for solving this class of problems. Multiply constrained problem was relaxed to a singly constrained problem by using the surrogate technique. To compute tighter bounds of the primal problem, the cutting plane method was used to solve the surrogate dual problem, where the surrogate relaxation problem was solved by the 0-1 linearization method. The domain cut technique was employed to eliminate the duality gap and thus to guarantee the convergence of tile algorithm. Numerical results were reported for large-scale multi-dimensional nonlinear knapsack problems.
基金partly supported by the National Natural Science Foundation of China(12061006)the Science and Technology Project of Education Department of Jiangxi Province(GJJ180414)+1 种基金East China University of Technology Research Foundation for Advanced Talents(DHBK2018050)The second author is supported by the National Natural Science Foundation of China(71762001)。
文摘In this paper,we demonstrate the existence part of the discrete Orlicz-Minkowski problem for p-capacity when 1<p<2.
文摘A series of problems in mechanics and physics are governed by the ordinary Poisson equation which demands linearity,isotropy,and material homo- geneity.In this paper a generalization with respect to nonlinearity,anisotropy,and inhomogeneity is made.Starting from the canonical basic equations in the primal and dual formulation respectively we derive systematically the corresponding generalized variational principles;under certain conditions they can be extended to so called complementary extremum principles allowing for global bounds.For simplicity a restriction to two dimensional problems is made,including twice-connected domains.
文摘In this paper, a class of nonsmooth multiobjective programming problems is considered. We introduce the new concept of invex of order??type II for nondifferentiable locally Lipschitz functions using the tools of Clarke subdifferential. The new functions are used to derive the sufficient optimality condition for a class of nonsmooth multiobjective programming problems. Utilizing the sufficient optimality conditions, weak and strong duality theorems are established for Wolfe type duality model.
文摘In this paper,we consider nonlinear infinity-norm minimization problems.We device a reliable Lagrangian dual approach for solving this kind of problems and based on this method we propose an algorithm for the mixed linear and nonlinear infinity- norm minimization problems.Numerical results are presented.
基金supported by the Natural Science Foundation of Anhui Province(Grant Number 2208085MG181)the Science Research Project of Higher Education Institutions in Anhui Province,Philosophy and Social Sciences(Grant Number 2023AH051063)the Open Fund of Key Laboratory of Anhui Higher Education Institutes(Grant Number CS2021-ZD01).
文摘The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality.
基金supported by the National Natural Science Foundation of China under Grant No.11371001
文摘develop a mentation This paper considers the priority facility primal-dual 3-approximation algorithm for procedure, the authors further improve the location problem with penalties: The authors this problem. Combining with the greedy aug- previous ratio 3 to 1.8526.
基金supported by the National Natural Science Foundation of China(71401106)the Innovation Program of Shanghai Municipal Education Commission(14YZ090)+4 种基金the Shanghai Natural Science Foundation(14ZR1418700)the Shanghai First-class Academic Discipline Project(S1201YLXK)the Hujiang Foundation of China(A14006)the grant S2009/esp-1594 from the Comunidad de Madrid(Spain)the grant MTM2012-36163-C06-06 from the Spanish government
文摘The semi-Lagrangian relaxation (SLR), a new exactmethod for combinatorial optimization problems with equality constraints,is applied to the quadratic assignment problem (QAP).A dual ascent algorithm with finite convergence is developed forsolving the semi-Lagrangian dual problem associated to the QAP.We perform computational experiments on 30 moderately difficultQAP instances by using the mixed integer programming solvers,Cplex, and SLR+Cplex, respectively. The numerical results notonly further illustrate that the SLR and the developed dual ascentalgorithm can be used to solve the QAP reasonably, but also disclosean interesting fact: comparing with solving the unreducedproblem, the reduced oracle problem cannot be always effectivelysolved by using Cplex in terms of the CPU time.
文摘With the rapid development of the individualized demand market,the demand for manufacturing flexibility has increased over time.As a result,a cell manufacturing system suitable for many varieties and small batches has been produced.With the goal of minimizing the area and logistics handling volume,and considering the arrangement order of facilities and channel constraints,a mathematical model was established,and the problem was solved by improved NSGA-II.After non-dominated sorting,traditional NSGA-II will cross-operate the individuals with the best sorting to generate new individuals.Such a selection strategy is extremely easy to fall into the local optimal solution.The improved NSGA-II is to improve the original selection operation,which is to select the first half of the excellent individuals in the non-dominated sorting into the cross operation,and then select the last sorted ones of the remaining individuals into the cross operation,and combine the best and the worst ones into the cross operation.Finally,an example is given to simulate and improve the solution of NSGA-II and NSGA-II.The simulation results indicate that the improved NSGA-II population shows more obvious diversity,it is easier to jump out of the local optimal solution than NSGA-II,and the satisfactory layout scheme of manufacturing cells is obtained.Therefore,it is more effective to use improved NSGA-II to solve the problem of manufacturing cell layout.
文摘In this article, we propose efficient methods for solving two stage transshipment problems. Transshipment problem is the special case of Minimum cost flow problem in which arc capacities are infinite. We start by proposing a novel problem formulation for a two stage transshipment problem. Later, special structure of our problem formulation is utilized to devise two dual based heuristics solutions with computational complexity of O (n2), and O (n3) respectively. These methods are motivated by the methods developed by Sharma and Saxena [1], Sinha and Sharma [2]. Our methods differ in the initialization and the subsequent variation of the dual variables associated with the transshipment nodes along the shortest path. Lastly, a method is proposed to extract a very good primal solution from the given dual solutions with a computational complexity of O (n2). Efficacy of these methods is demonstrated by our numerical analysis on 200 random problems.
文摘The stochastic dual dynamic programming (SDDP) algorithm is becoming increasingly used. In this paper we present analysis of different methods of lattice construction for SDDP exemplifying a realistic variant of the newsvendor problem, incorporating storage of production. We model several days of work and compare the profits realized using different methods of the lattice construction and the corresponding computer time spent in lattice construction. Our case differs from the known one because we consider not only a multidimensional but also a multistage case with stage dependence. We construct scenario lattice for different Markov processes which play a crucial role in stochastic modeling. The novelty of our work is comparing different methods of scenario lattice construction. We considered a realistic variant of the newsvendor problem. The results presented in this article show that the Voronoi method slightly outperforms others, but the k-means method is much faster overall.
文摘In this paper, combining with the L_p-dual geominimal surface area and the general L_p-centroid bodies, we research the Shephard type problems for general L_p-centroid bodies.