期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于双分解的双通道PCNN红外与可见光图像融合 被引量:2
1
作者 李全军 张贵仓 +1 位作者 韩根亮 张航健 《激光与红外》 CAS CSCD 北大核心 2023年第5期784-791,共8页
为解决红外与可见光图像融合过程中存在的对比与清晰度较低和小目标易丢失等问题,提出了基于在双分解模型下的双通道PCNN(dPCNN)图像融合算法。首先对两幅源图像进行预增强处理,通过鲁棒的主成分分析(RPCA)将处理后图像分解为稀疏层与... 为解决红外与可见光图像融合过程中存在的对比与清晰度较低和小目标易丢失等问题,提出了基于在双分解模型下的双通道PCNN(dPCNN)图像融合算法。首先对两幅源图像进行预增强处理,通过鲁棒的主成分分析(RPCA)将处理后图像分解为稀疏层与低秩层,接着,再利用非下采用剪切波变换(NSST)对的稀疏层进行多尺度分解得到低频子带与高频子带,然后对低秩层和低频子带采用局部加权能量与拉普拉斯能量两者取大的规则进行融合,对高频子带则利用dPCNN的点火图进行融合,最后将得到的融合成分进行逆变换或合成来得到最终融合图像。实验表明,该算法的融合图像目标信息对比突出、小目标信息明显,对源图像信息保留较好,客观评价指标也明显也优于其他算法,其中互信息有了大幅度的提升,有效地提升了红外与可见光图像的融合效果。 展开更多
关键词 RPCA 双通道pcnn NSST 红外与可见光图像融合
下载PDF
基于双树复Shearlet变换与改进PCNN的图像融合算法 被引量:2
2
作者 魏志军 周肖树 《电子测量与仪器学报》 CSCD 北大核心 2018年第6期79-86,共8页
为了克服双树复小波变换(dual tree complex wavelet transform,DTCWT)在图像融合中对方向选择性较差,难以很好地反映源图像的细节信息等不足,提出了一种新的双树复剪切波变换(dual-tree complex shearlet transform,DTCST)与自适应双... 为了克服双树复小波变换(dual tree complex wavelet transform,DTCWT)在图像融合中对方向选择性较差,难以很好地反映源图像的细节信息等不足,提出了一种新的双树复剪切波变换(dual-tree complex shearlet transform,DTCST)与自适应双通道脉冲耦合神经网络(adaptive dual-channel pulse coupled neural network,ADCPCNN)的图像融合方案。首先,利用形态学对源图像处理,对图像进行增强。再利用DTCST方法对增强图像完成分解,获得相应的低频、高频系数。然后,对于低频系数,定义了一种新的基于稀疏表示(sparse representation,SR)的融合规则。对于高频系数,利用边缘能量作为ADCPCNN外部输入,定义了一种ADCPCNN融合规则。最后,基于逆DTCST机制,输出融合图像。实验表明,与当前常用的图像融合方法比较,算法具有更高的融合视觉质量,所输出的图像更加清晰,较好保持了源图像的细节与纹理。 展开更多
关键词 图像融合 双树复小波变换 自适应pcnn 稀疏表示 边缘能量
下载PDF
基于FDST和双通道PCNN的红外与可见光图像融合 被引量:19
3
作者 戴进墩 刘亚东 +2 位作者 毛先胤 盛戈皞 江秀臣 《红外与激光工程》 EI CSCD 北大核心 2019年第2期67-74,共8页
为提高融合图像的细节表现力和信息冗余度,针对红外与可见光图像,提出一种基于有限离散剪切波变换(FDST)和双通道脉冲耦合神经网络(PCNN)的图像融合方法。首先,利用FDST分解红外与可见光图像得到各自的高低频子带系数;再对高低频子带系... 为提高融合图像的细节表现力和信息冗余度,针对红外与可见光图像,提出一种基于有限离散剪切波变换(FDST)和双通道脉冲耦合神经网络(PCNN)的图像融合方法。首先,利用FDST分解红外与可见光图像得到各自的高低频子带系数;再对高低频子带系数分别采用不同链接强度的改进的空间频率激励的双通道PCNN进行融合;最后,通过FDST反变换得到融合图像。实验结果表明该算法能够有效增强图像清晰度和整体视觉效果,融合效果跟其他融合方法相比,在互信息、边缘信息传递量、标准差多个客观评价指标上具有明显提高。 展开更多
关键词 图像融合 红外与可见光 FDST变换 双通道pcnn 链接强度
下载PDF
基于LatLRR和PCNN的红外与可见光融合算法 被引量:5
4
作者 谢艳新 《液晶与显示》 CAS CSCD 北大核心 2019年第4期423-429,共7页
针对光谱差异较大的红外与可见光图像,本文提出一种基于潜在低秩表示(LatLRR)和脉冲式耦合神经网络(PCNN)的多尺度融合模型。首先,该算法利用非下采样剪切波变换(NSST)获取图像的低频与高频分量。鉴于图像的低频分量决定最终的融合效果... 针对光谱差异较大的红外与可见光图像,本文提出一种基于潜在低秩表示(LatLRR)和脉冲式耦合神经网络(PCNN)的多尺度融合模型。首先,该算法利用非下采样剪切波变换(NSST)获取图像的低频与高频分量。鉴于图像的低频分量决定最终的融合效果,采用LatLRR算法挖掘源图像内在的显著特征对低频分量自适应加权融合。除此外,针对决定融合图像细节的高频分量,则利用双通道PCNN模型作为它的融合规则。其中平均梯度算子(AVG)和方向梯度和算子(SDG)分别作为PCNN的外界刺激与链接强度,它们能更好地表征图像的纹理特性。通过上述全新的融合规则,可将包含在红外图像内部的显著性特征与可见光图像的梯度特征完美结合,从而获取具有优良视觉效果的融合图像。本文采用3种不同的场景来测试所提方法的融合性能,与其他典型融合方法相比,本文提出的算法具有更佳的视觉效果,同时客观评价参数值增加约2%~5%。 展开更多
关键词 潜在低秩表示 图像融合 双通道pcnn NSST
下载PDF
Feature-Based Fusion of Dual Band Infrared Image Using Multiple Pulse Coupled Neural Network 被引量:1
5
作者 Yuqing He Shuaiying Wei +3 位作者 Tao Yang Weiqi Jin Mingqi Liu Xiangyang Zhai 《Journal of Beijing Institute of Technology》 EI CAS 2019年第1期129-136,共8页
To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)... To improve the quality of the infrared image and enhance the information of the object,a dual band infrared image fusion method based on feature extraction and a novel multiple pulse coupled neural network(multi-PCNN)is proposed.In this multi-PCNN fusion scheme,the auxiliary PCNN which captures the characteristics of feature image extracting from the infrared image is used to modulate the main PCNN,whose input could be original infrared image.Meanwhile,to make the PCNN fusion effect consistent with the human vision system,Laplacian energy is adopted to obtain the value of adaptive linking strength in PCNN.After that,the original dual band infrared images are reconstructed by using a weight fusion rule with the fire mapping images generated by the main PCNNs to obtain the fused image.Compared to wavelet transforms,Laplacian pyramids and traditional multi-PCNNs,fusion images based on our method have more information,rich details and clear edges. 展开更多
关键词 infrared IMAGE IMAGE FUSION dual BAND pulse coupled NEURAL network(pcnn) FEATURE extraction
下载PDF
基于DT-CWT和自适应PCNN模型的多聚焦图像融合方法研究
6
作者 张腾敏 林斯乐 +1 位作者 朱胜 洪培瑶 《唐山学院学报》 2021年第6期16-22,69,共8页
针对传统图像融合方法在多聚焦图像融合中存在细节丢失、边缘模糊和焦点不清楚等问题,提出一种基于双树-复小波变换(DT-CWT)优化显著性测度和自适应脉冲耦合神经网络(PCNN)模型的多聚焦图像融合方法。首先,将两张聚焦区域不同的输入图... 针对传统图像融合方法在多聚焦图像融合中存在细节丢失、边缘模糊和焦点不清楚等问题,提出一种基于双树-复小波变换(DT-CWT)优化显著性测度和自适应脉冲耦合神经网络(PCNN)模型的多聚焦图像融合方法。首先,将两张聚焦区域不同的输入图像使用双树-复小波分解成低频子带和高频子带;然后,对低频子带采用基于显著性测度的度量方法计算小波融合系数,对于高频子带,采用自适应PCNN模型计算触发时间来选取高频融合子带;最后,通过双树-复小波逆变换重构得到融合结果。与其他融合方法进行对比,结果表明,基于文章所提方法的融合图像更加自然清晰,具有较高的边缘保持度,同时保留了更多的细节信息,因此,此方法可以大大提高图像质量。 展开更多
关键词 多聚焦图像 融合方法 双树-复小波变换 显著性测度 自适应pcnn模型
下载PDF
粒子群进化学习自适应双通道脉冲耦合神经网络图像融合方法研究 被引量:15
7
作者 李奕 吴小俊 《电子学报》 EI CAS CSCD 北大核心 2014年第2期217-222,共6页
针对双通道脉冲耦合神经网络图像融合方法中参数选取不易确定之挑战,提出了一种基于进化学习的自适应双通道脉冲耦合图像融合方法.通过引入自适应学习能力的进化学习算法和构建新的优化目标对双通道脉冲耦合神经网络模型参数来进行优化... 针对双通道脉冲耦合神经网络图像融合方法中参数选取不易确定之挑战,提出了一种基于进化学习的自适应双通道脉冲耦合图像融合方法.通过引入自适应学习能力的进化学习算法和构建新的优化目标对双通道脉冲耦合神经网络模型参数来进行优化,提出的新算法能够有效地找到双通道脉冲耦合神经网络模型的近似最优参数,克服了经典双通道脉冲耦合神经网络图像融合方法需要人工交互穷举尝试不同参数来获取较优参数之缺点.实验研究亦表明了上述优点. 展开更多
关键词 双通道脉冲耦合神经网络 进化学习 多准则目标函数 图像融合
下载PDF
一种新的基于压缩感知的多焦点图象融合方法 被引量:1
8
作者 宋斌 吴乐华 +2 位作者 王开 郭辉 岳鑫 《通信技术》 2015年第5期551-554,共4页
提出一种基于压缩感知和脉冲耦合神经网络的图像融合算法,包括三部分:图像傅里叶变换稀疏表示、测量融合和图像重构。首先,将双通道脉冲耦合神经网络(Dual-PCNN)模型应用到整个算法当中;其次,针对新的融合框架及傅里叶变换的系数特点,... 提出一种基于压缩感知和脉冲耦合神经网络的图像融合算法,包括三部分:图像傅里叶变换稀疏表示、测量融合和图像重构。首先,将双通道脉冲耦合神经网络(Dual-PCNN)模型应用到整个算法当中;其次,针对新的融合框架及傅里叶变换的系数特点,提出双星型采样下基于测量值标准差的加权融合方法;最后,通过最小全变分算法重构图像。实验仿真结果证明该方法优于其他基于傅立叶变换的方法。 展开更多
关键词 压缩感知 图像融合 双通道脉冲神经网络 标准差
下载PDF
基于NSST域的改进加权非负矩阵分解的图像融合 被引量:3
9
作者 史敏红 高媛 +1 位作者 秦品乐 王丽芳 《科学技术与工程》 北大核心 2018年第3期268-273,共6页
针对加权非负矩阵分解中算法复杂度较高的问题,提出一种基于加权非负矩阵分解和双通道脉冲耦合神经网络的图像融合的改进算法。首先,对已经配准的两个源图像进行非下采样Shearlet变换;然后,对于图像低频子带,采用改进的WNMF的算法,动态... 针对加权非负矩阵分解中算法复杂度较高的问题,提出一种基于加权非负矩阵分解和双通道脉冲耦合神经网络的图像融合的改进算法。首先,对已经配准的两个源图像进行非下采样Shearlet变换;然后,对于图像低频子带,采用改进的WNMF的算法,动态更新权值矩阵,更好地提取图像特征信息。对于高频子带,采用改进双通道脉冲耦合神经网络的算法,链接强度值采用块的梯度值,更好地保留图像的微小细节信息;最后,经过非下采样Shearlet的逆变换得到融合图像。实验表明,将加权非负矩阵分解与双通道脉冲耦合神经网络相结合,不仅能很好的提取图像的特征信息,保留更多细节信息;同时双通道的脉冲耦合神经网络的方法能提高算法运行效率。 展开更多
关键词 加权非负矩阵分解 非下采样剪切波变换 双通道脉冲耦合神经网络 链接强度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部