In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on out...In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.展开更多
The dual active bridge(DAB)converter is gaining more and more attention in various applications such as energy storage systems,electric vehicles and smart grids.To improve the quality of the input current,a LC filter ...The dual active bridge(DAB)converter is gaining more and more attention in various applications such as energy storage systems,electric vehicles and smart grids.To improve the quality of the input current,a LC filter is often cascaded at the input side of the DAB converter.However,there are instable problems of this cascaded system due to the impedance interactions of the DAB converter and the LC filter,although the DAB converter is stable at the individual operation mode.To assess the stability of the cascaded system of the DAB converter and the LC filter,the impedance model of the DAB converter is firstly developed based on generalized state-space averaging method.The developed impedance model can be used to accurately predict the stability of the DAB converter with its LC input filter.Based on the stability analysis,the optimum filter parameter design guideline is determined.The impedance model and stability analysis are validated by the simulation and experimental results.展开更多
Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can ...Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards.展开更多
Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing num...Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing number of on-board power electronic based devices,the distribution system of the aircraft can be regarded as an onboard microgrid.As it is known that the load power electronic converters can exhibit constant power load(CPL)characteristics and reduce the system stability,it is necessary to accurately predict and enhance the system stability in designing process.This paper firstly analyzes the stability of an on-board DC microgrid with the presence of CPL.Then,discusses the reasons behind instability and proposes a control strategy to enhance system stability.Finally,the simulation results are worked out to validate the analysis and the effect of the proposed control strategy.展开更多
This paper proposes a system identification framework based on eigensystem realization to accurately model power electronic converters.The proposed framework affords an energy-based optimal reduction method to precise...This paper proposes a system identification framework based on eigensystem realization to accurately model power electronic converters.The proposed framework affords an energy-based optimal reduction method to precisely identify the dynamics of power electronic converters from simulated or actual raw data measured at the converter’s ports.This method does not require any prior knowledge of the topology or internal parameters of the converter to derive the system modal information.The accuracy and feasibility of the proposed method are exhaustively evaluated via simulations and practical tests on a software-simulated and hardware-implemented dual active bridge(DAB)converter under steady-state and transient conditions.After various comparisons with the Fourier series-based generalized average model,switching model,and experimental measurements,the proposed method attains a root mean square error(RMSE)of less than 1%with respect to the actual raw data.Moreover,the computational effort is reduced to 1/8.6 of the Fourier series-based model.展开更多
Solid-state transformers(SSTs)have been widely used in many areas owing to their advantages of high-frequency isolation and high power density.However,high-frequency switching causes severe electromagnetic interferenc...Solid-state transformers(SSTs)have been widely used in many areas owing to their advantages of high-frequency isolation and high power density.However,high-frequency switching causes severe electromagnetic interference(EMI)problems.Particularly,the common-mode(CM)EMI caused by the switching of the dual active bridge(DAB)converter is conducted through the parasitic capacitances in the high-frequency transformer and impacts the system reliability.With the understanding of the CM EMI model in SSTs,CM EMI mitigation methods have been studied.For passive mitigation,the coupled inductor can be integrated with the phase-shift inductor function to reduce CM EMI.For active mitigation,variations in the DAB switching frequency can help reduce the CM EMI peak.An active EMI filter can also be designed to sample and compensate for CM EMI.Using these methods,CM EMI can be reduced in SSTs.展开更多
文摘In this paper, the zero voltage switching (ZVS) region of a dual active bridge (DAB) converter with wide band-gap (WBG) power semiconductor device is analyzed. The ZVS region of a DAB converter varies depending on output power and voltage ratio. The DAB converters operate with hard switching at light loads, it is difficult to achieve high efficiency. Fortunately, WBG power semiconductor devices have excellent hard switching characteristics and can increase efficiency compared to silicon (Si) devices. In particular, WBG devices can achieve ZVS at low load currents due to their low parasitic output capacitance (C<sub>o,tr</sub>) characteristics. Therefore, in this paper, the ZVS operating resion is analyzed based on the characteristics of Si, silicon carbide (SiC) and gallium nitride (GaN). Power semiconductor devices. WBG devices with low C<sub>o,tr</sub> operate at ZVS at lower load currents compared to Si devices. To verify this, experiments are conducted and the results are analyzed using a 3 kW DAB converter. For Si devices, ZVS is achieved above 1.4 kW. For WBG devices, ZVS is achieved at 700 W. Due to the ZVS conditions depending on the switching device, the DAB converter using Si devices achieves a power conversion efficiency of 91% at 1.1 kW output. On the other hand, in the case of WBG devices, power conversion efficiency of more than 98% is achieved under 11 kW conditions. In conclusion, it is confirmed that the WBG device operates in ZVS at a lower load compared to the Si device, which is advantageous in increasing light load efficiency.
文摘The dual active bridge(DAB)converter is gaining more and more attention in various applications such as energy storage systems,electric vehicles and smart grids.To improve the quality of the input current,a LC filter is often cascaded at the input side of the DAB converter.However,there are instable problems of this cascaded system due to the impedance interactions of the DAB converter and the LC filter,although the DAB converter is stable at the individual operation mode.To assess the stability of the cascaded system of the DAB converter and the LC filter,the impedance model of the DAB converter is firstly developed based on generalized state-space averaging method.The developed impedance model can be used to accurately predict the stability of the DAB converter with its LC input filter.Based on the stability analysis,the optimum filter parameter design guideline is determined.The impedance model and stability analysis are validated by the simulation and experimental results.
文摘Over the last few years, smart grids have become a topic of intensive research, development and deployment across the world. This is due to the fact that, through the smart grid, stable and reliable power systems can be achieved. This paper presents a fuzzy logic control for dual active bridge series resonant converters for DC smart grid application. The DC smart grid consists of wind turbine and photovoltaic generators, controllable and DC loads, and power converters. The proposed control method has been applied to the controllable load's and the grid side's dual active bridge series resonant converters for attaining control of the power system. It has been used for management of controllable load's state of charge, DC feeder's voltage stability during the loads and power variations from wind energy and photovoltaic generation and power flow management between the grid side and the DC smart grid. The effectiveness of the proposed DC smart grid operation has been verified by simulation results obtained by using MATLAB and PLECS cards.
基金supported by Ministry of Science&Technology under National Key R&D Program of China(No.2021YFE0108600)Ningbo Science and Technology Bureau under S&T Innovation 2025 Major Special Program(No.2019B10071)Key International Cooperation of National Natural Science Foundation of China(No.51920105011)。
文摘Electrifying the on-board subsystems of aircraft becomes an inevitable process as being faced with the environmental pollution,along with the proposed concept called more electric aircraft(MEA).With the increasing number of on-board power electronic based devices,the distribution system of the aircraft can be regarded as an onboard microgrid.As it is known that the load power electronic converters can exhibit constant power load(CPL)characteristics and reduce the system stability,it is necessary to accurately predict and enhance the system stability in designing process.This paper firstly analyzes the stability of an on-board DC microgrid with the presence of CPL.Then,discusses the reasons behind instability and proposes a control strategy to enhance system stability.Finally,the simulation results are worked out to validate the analysis and the effect of the proposed control strategy.
基金supported by the Project Support Program for Research and Technological Innovation of UNAM(DGAPA,PAPIIT-2021)(No.TA101421)the strategic project PE-A-04 of CEMIE-Redes。
文摘This paper proposes a system identification framework based on eigensystem realization to accurately model power electronic converters.The proposed framework affords an energy-based optimal reduction method to precisely identify the dynamics of power electronic converters from simulated or actual raw data measured at the converter’s ports.This method does not require any prior knowledge of the topology or internal parameters of the converter to derive the system modal information.The accuracy and feasibility of the proposed method are exhaustively evaluated via simulations and practical tests on a software-simulated and hardware-implemented dual active bridge(DAB)converter under steady-state and transient conditions.After various comparisons with the Fourier series-based generalized average model,switching model,and experimental measurements,the proposed method attains a root mean square error(RMSE)of less than 1%with respect to the actual raw data.Moreover,the computational effort is reduced to 1/8.6 of the Fourier series-based model.
文摘Solid-state transformers(SSTs)have been widely used in many areas owing to their advantages of high-frequency isolation and high power density.However,high-frequency switching causes severe electromagnetic interference(EMI)problems.Particularly,the common-mode(CM)EMI caused by the switching of the dual active bridge(DAB)converter is conducted through the parasitic capacitances in the high-frequency transformer and impacts the system reliability.With the understanding of the CM EMI model in SSTs,CM EMI mitigation methods have been studied.For passive mitigation,the coupled inductor can be integrated with the phase-shift inductor function to reduce CM EMI.For active mitigation,variations in the DAB switching frequency can help reduce the CM EMI peak.An active EMI filter can also be designed to sample and compensate for CM EMI.Using these methods,CM EMI can be reduced in SSTs.