Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo b...Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo both in spatial and time-frequency domain. The conventional way to solve this problem would suffer from performance degradation when physical target(PT) and false target(FT) are superposed in time. In this paper, we propose a new spatial filter according to the different correlation characteristic between PT and FT. The filter takes the ratio of expected signal power to expected jamming and noise power as the objective function under the constant filter modulus constraint. The optimal filter coefficients are derived with a generalized rayleigh quotient approach. Moreover, we analytically compute the target detection probability and demonstrate the applicability of the proposed method to the correlation coefficient. Monte Carlo simulations are provided to corroborate the proposed studies. Furthermore, the proposed method has simple architecture and low computation complexity, making it easily applied in modern radar system.展开更多
A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances.It is constructed based on a resonant-type composite right/left handed transmissi...A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances.It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap.The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna.For verification,a DNG ZOR antenna sample is fabricated and measured.Numerical and experimental results agree well with each other,indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model.The size of the antenna is 49% more compact than its previous counterpart.The superiority of WECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance.展开更多
A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited ...A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a "T" configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than - 28.5 dB. The measured VSWR ≤ 2 bandwidths reach 20.7 96 and 19.196 at the verrical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spacebome synthetic aperture radars (SAR) and active phased array radars.展开更多
A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-w...A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.展开更多
In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized plan...In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized planar antenna elements and arrays, and proposes a few of novel designs with experimental verification. The main accomplishments reported in the dissertation are as follows.展开更多
Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and pl...Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and plasma collision frequencies.Results show that under certain settings,the radiation pattern of a plasma antenna resembles that of a metallic antenna.In contrast to a metallic antenna,a plasma antenna possesses other functionalities,such as dynamic reconfiguration and digital controllability.The data from simulation are similar to the measurement results,indicating that column plasma antenna can realize dual-channel communication.This work confirms the viability of realizing dual-channel communication by column plasma antenna,which adds a new but promising method for modern intelligent communication.展开更多
We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top a...We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top and bottom sides of the unit cell, and a cross-slots metallic layer in the middle that serves as the ground. The multimode resonance in the unit cell can realize a large phase shift(covering 0?–360?), and the total transmission efficiency of the lens is above 80%.The feed antenna at the focal point of the lens is a broadband dual-polarized microstrip antenna. Both the simulated and the measured results demonstrate that the dual-polarized lens antenna system can realize a gain of more than 16.1 dB, and an input port isolation of more than 25.0 dB.展开更多
This paper investigates a corner fed microstrip patch antenna by means of the cavity model with proposed feed modeling. The input impedance and radiation patterns for a corner feed are calculated. The mutual coupling...This paper investigates a corner fed microstrip patch antenna by means of the cavity model with proposed feed modeling. The input impedance and radiation patterns for a corner feed are calculated. The mutual coupling between two corner feeds is investigated. An improvement in mutual coupling has been found for corner feeds relative to edge feeds, which is helpful for the design of dual polarized antenna arrays in wireless communication and radar applications.展开更多
A novel equilateral triangular patch with a rectangular notch etched to one radiating edge on organic magnetic substrate is proposed for dual frequency operation. Both operations of these dual frequencies arise from t...A novel equilateral triangular patch with a rectangular notch etched to one radiating edge on organic magnetic substrate is proposed for dual frequency operation. Both operations of these dual frequencies arise from the perturbation of TM 10 and TM 11 mode by simply cutting a rectangular notch at the patch bottom. Simulations and experiments have shown the validity of this design. Using an organic magnetic material as the substrate, the antenna exhibits a broader bandwidth of 5.5% and 4.7% at dual-frequencies 1.56 GHz and 2.45 GHz, respectively, as well as a reduced size compared to the dual-frequency patch antennas on non-magnetic material.展开更多
A compact dual band antenna made of high dielectric constant substrate is studied. Embedding a higher dielectric cylindrical inside the substrate host cylindrical enhances the dual band behaviour. The first part displ...A compact dual band antenna made of high dielectric constant substrate is studied. Embedding a higher dielectric cylindrical inside the substrate host cylindrical enhances the dual band behaviour. The first part displays the characteristics of single CRDA as return loss, bandwidth and radiation pattern, then, the second part describes the aim of using an antenna, composed by the arrangement of two cylindrical resonators in which the smallest is inserted in the largest, to lead dual-frequency behaviour, and achieve a dual-band antenna. The proposed antennas are investigated using Finite Element Method (FEM), the impedance matching dual band definition and covers the Ultra High Frequency band (UHF).展开更多
In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of r...In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,TEδx 21 and TE1yδ1 to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization(LHCP).The second port feeds vertical elements to obtain right hand circular polarization(RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2,respectively,with port isolations of−33.51 dB.The design achieves a voltage standing-wave ratio(VSWR)<−10 dB and an axial ratio(AR)<−3 dB bandwidth of 2.48%(5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR<−10 dB and AR<−3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.展开更多
This paper presents a low profile dual polarized directional antenna composed of loop and dipole arrays mounted on a ground plane with each loops and dipoles being fed independently. Each loop antenna is paired with a...This paper presents a low profile dual polarized directional antenna composed of loop and dipole arrays mounted on a ground plane with each loops and dipoles being fed independently. Each loop antenna is paired with a reflector while each dipole antenna is paired with a director and a reflector. The proposed antenna is intended for an indoor base station (BS) with resonance frequency of 2.4 GHz and capable of producing four orthogonal directional pattern with downward elevation angle equals to 30°;and half power bandwidth (HPBW) less than 80°;in both vertical and horizontal polarization. The reflection characteristics of the loop and dipole arrays are less than -10 dB and the mutual coupling between the vertical and horizontal polarization elements is nearly less than -20 dB. In later progress, the dipole antenna was substituted with printed dipole antenna to achieve a better performance. Both the calculated and measured results demonstrated that the desired radiation patterns were achieved, and the measured results agreed well with the calculated ones. Consequently, a low profile antenna with a thickness of 0.16 λ (20 mm) having the expected radiation pattern is successfully designed.展开更多
In this article, a low-profile wideband dual-polarized planar printed dipole antenna, fed by coaxial lines, is investigated for the TD-SCDMA operation. The antenna is composed of two printed dipoles, two pairs of feed...In this article, a low-profile wideband dual-polarized planar printed dipole antenna, fed by coaxial lines, is investigated for the TD-SCDMA operation. The antenna is composed of two printed dipoles, two pairs of feeding coaxial lines and a ground. The single-polarized planar printed rectangular dipole and petal dipole, with the similar configuration, are first studied, exhibiting the potential wideband operation. Two petal dipoles are then cross-arranged to design a dual-polarized planar printed antenna, giving a lower profile and a better bandwidth covering the Chinese TD-SCDMA band (1880-2400 MHz). The dual-polarized antenna is simply excited by two pairs of coaxial feeds. Simulated and measured results show that the antenna achieves a common impedance bandwidth of 42% at both ports, good isolation of more than 25 dB, stable radiation patterns and the gain of about 7 dBi over the operating bandwidth.展开更多
The dual band equilateral triangular microstrip antennas are realized by cutting the slots of either quarter wave or half wave in length, inside the patch. In this design, however these simpler approximations of slot ...The dual band equilateral triangular microstrip antennas are realized by cutting the slots of either quarter wave or half wave in length, inside the patch. In this design, however these simpler approximations of slot length against the frequency do not give closer results for different slot lengths and there positions inside the patch. In this paper, the modal variations of slot cut patch antennas over wide frequency range are studied. It is observed that the slot does not introduce any mode but reduces the higher order mode resonance frequency of the patch and along with the fundamental mode realizes dual band response. The formulations of the resonant length for the mode introduce by the slots in these antennas are proposed. The resonance frequencies calculated using proposed formulations agree well with the simulated results with an error of less than 5%.展开更多
A low profile dual-band multiple-input-multiple-output (MIMO) antenna system is proposed. The proposed MIMO antenna consists of two low profile unbalanced fed inverted L antennas with parasitic elements to resonate at...A low profile dual-band multiple-input-multiple-output (MIMO) antenna system is proposed. The proposed MIMO antenna consists of two low profile unbalanced fed inverted L antennas with parasitic elements to resonate at 2.45 GHz and 5 GHz. The structure is uncomplicated by locating two ultra low profile inverted L antennas on the finite conducting plane. The proposed MIMO antenna is numerically and experimentally analyzed. When the size of conducting plane is 55 mm by 55 mm and the height of antenna is 9 mm, the directive gain of 4.11 dBi and the S11 bandwidth of 5.71% are achieved for lower frequency of 2.45 GHz. At the upper frequency of 5 GHz, the directive gain of 8.22 dBi and the S11 bandwidth of 6% are obtained. The proposed antenna has good diversity gain, shown by the correlation coefficient becomes less than 0.005 at the frequency of 2.45 GHz and 5 GHz band when the distance between inverted L elements is 41 mm. A good agreement between calculated and measured results is obtained. The results show that the weak mutual coupling of the proposed antenna and this feature enables it to cover the required bandwidths for WLAN operation at the 2.4 GHz band and 5 GHz band.展开更多
An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with...An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.展开更多
Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is show...Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.展开更多
This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time- domain (FDTD) numerical analysis m...This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time- domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication.展开更多
In this paper a design of single layer rectangular notch microstrip antenna for dual-band is proposed and experimentally investigated. This antenna is excited by microstrip line. Direct microstrip coupling with proper...In this paper a design of single layer rectangular notch microstrip antenna for dual-band is proposed and experimentally investigated. This antenna is excited by microstrip line. Direct microstrip coupling with proper matching transformer has been used. Design is made for optimized notch dimension for two resonant frequencies. These resonance frequencies change with the variation in length and width of the notch. The input impedance and VSWR have been measured with the help of Network analyzer. It is found that the input impedance and VSWR depends variation in length and width of the notch microstrip antenna.展开更多
A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range ...A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range (2.86 to 4.63 GHz). It is basically a low cost, light weight medium gain antenna, which is used for mobile communication. The variations of the length and width (1mm) of the stacked rectangular patch antenna have been done. And it is found dual resonance with increasing lower resonance frequency and almost constant upper resonance frequency with increases of the length & width of rectangular microstrip antenna. The input impedance and VSWR, return loss have been measured with the help of Network analyzer.展开更多
文摘Detecting target echo in the existence of self-screen jamming is a challenging work for radar system, especially when digital radio frequency memory(DRFM) technique is employed that mixes the jamming and target echo both in spatial and time-frequency domain. The conventional way to solve this problem would suffer from performance degradation when physical target(PT) and false target(FT) are superposed in time. In this paper, we propose a new spatial filter according to the different correlation characteristic between PT and FT. The filter takes the ratio of expected signal power to expected jamming and noise power as the objective function under the constant filter modulus constraint. The optimal filter coefficients are derived with a generalized rayleigh quotient approach. Moreover, we analytically compute the target detection probability and demonstrate the applicability of the proposed method to the correlation coefficient. Monte Carlo simulations are provided to corroborate the proposed studies. Furthermore, the proposed method has simple architecture and low computation complexity, making it easily applied in modern radar system.
基金Supported by the National Natural Science Foundation of China under Grant No 60971118the National Basic Research Program of China under Grant No 2009CB613306.
文摘A novel microstrip zeroth-order resonator (ZOR) antenna and its equivalent circuit model are exploited with two zeroth-order resonances.It is constructed based on a resonant-type composite right/left handed transmission line (CRLH TL) using a Wunderlich-shaped extended complementary single split ring resonator pair (W-ECSSRRP) and a series capacitive gap.The gap either can be utilized for double negative (DNG) ZOR antenna or be removed to engineer a simplified elision-negative ZOR (ENG) antenna.For verification,a DNG ZOR antenna sample is fabricated and measured.Numerical and experimental results agree well with each other,indicating that the omnidirectional radiations occur at two frequency bands which are accounted for by two shunt branches in the circuit model.The size of the antenna is 49% more compact than its previous counterpart.The superiority of WECSSRRP over CSSRRP lies in the lower fundamental resonance of the antenna by 38.2% and the introduction of a higher zeroth-order resonance.
文摘A wideband dual-polarized slot-coupled stacked microstrip antenna with very high isolation and low cross-polarization is presented. To improve isolation between two poiarization ports, the stacked patches are excited by an open-ended and a T-shaped microstrip lines both via two H-shaped slots placed in a "T" configuration. The measured isolation is better than 40.5 dB over the bandwidth from 8.8 to 9.8 GHz with cross-polarization level less than - 28.5 dB. The measured VSWR ≤ 2 bandwidths reach 20.7 96 and 19.196 at the verrical and horizontal polarization ports, respectively. This antenna is suitable to be used as array elements in spacebome synthetic aperture radars (SAR) and active phased array radars.
基金supported by the National Natural Science Foundation of China(61071044)the Traffic Applied Basic Research Project of the Ministry of Transport of China(2010-329-225-030)+2 种基金the Doctor Startup Foundation of Liaoning Province(20141103)the Scientific Research Project of the Department of Education of Liaoning Province(L2013196)the Fundamental Research Funds for the Central Universities(2014YB05)
文摘A novel dual-band antenna is proposed for mitigating the multi-path interference in the global navigation satellite system(GNSS) applications. The radiation patches consist of a shortedannular-ring reduced-surface-wave(SAR-RSW) element and an inverted-shorted-annular-ring reduced-surface-wave(ISAR-RSW)element. One key feature of the design is the proximity-coupled probe feeds to increase impedance bandwidth. The other is the defected ground structure band rejection filters to suppress the interaction effect between the SAR-RSW and the ISAR-RSW elements. In addition, trans-directional couplers are used to obtain tight coupling. Measurement results indicate that the antenna has a larger than 10 d B return loss bandwidth and a less than 3 d B axial-ratio(AR) bandwidth in the range of(1.164 – 1.255) GHz and(1.552 – 1.610) GHz. The gain of the passive antenna in the whole operating band is more than 7 d Bi.
文摘In order to meet the urgent needs in wireless communications, microwave image synthetic aperture radars (SAR), and electronic warfare systems, this dissertation studies several types of broadband dual-polarized planar antenna elements and arrays, and proposes a few of novel designs with experimental verification. The main accomplishments reported in the dissertation are as follows.
文摘Along with the introduction of the concept of dual-channel communication,we utilized the finite-difference time-domain(FDTD) method to simulate and measure the radiation pattern under certain plasma densities and plasma collision frequencies.Results show that under certain settings,the radiation pattern of a plasma antenna resembles that of a metallic antenna.In contrast to a metallic antenna,a plasma antenna possesses other functionalities,such as dynamic reconfiguration and digital controllability.The data from simulation are similar to the measurement results,indicating that column plasma antenna can realize dual-channel communication.This work confirms the viability of realizing dual-channel communication by column plasma antenna,which adds a new but promising method for modern intelligent communication.
基金Project supported by the Open Research Program of the State Key Laboratory of Millimeter Waves,China(Grant No.K201926)the Postgraduate Research&Practice Innovation Program of Jiangsu Province,Chinathe Nanjing University of Posts and Telecommunications Scientific Foundation,China(Grant No.NY215137)
文摘We propose a dual-polarized lens antenna system based on isotropic metasurfaces for 12 GHz applications. The metasurface lens is composed of subwavelength unit cells(0.24λ0) with metallic strips etched on the top and bottom sides of the unit cell, and a cross-slots metallic layer in the middle that serves as the ground. The multimode resonance in the unit cell can realize a large phase shift(covering 0?–360?), and the total transmission efficiency of the lens is above 80%.The feed antenna at the focal point of the lens is a broadband dual-polarized microstrip antenna. Both the simulated and the measured results demonstrate that the dual-polarized lens antenna system can realize a gain of more than 16.1 dB, and an input port isolation of more than 25.0 dB.
文摘This paper investigates a corner fed microstrip patch antenna by means of the cavity model with proposed feed modeling. The input impedance and radiation patterns for a corner feed are calculated. The mutual coupling between two corner feeds is investigated. An improvement in mutual coupling has been found for corner feeds relative to edge feeds, which is helpful for the design of dual polarized antenna arrays in wireless communication and radar applications.
文摘A novel equilateral triangular patch with a rectangular notch etched to one radiating edge on organic magnetic substrate is proposed for dual frequency operation. Both operations of these dual frequencies arise from the perturbation of TM 10 and TM 11 mode by simply cutting a rectangular notch at the patch bottom. Simulations and experiments have shown the validity of this design. Using an organic magnetic material as the substrate, the antenna exhibits a broader bandwidth of 5.5% and 4.7% at dual-frequencies 1.56 GHz and 2.45 GHz, respectively, as well as a reduced size compared to the dual-frequency patch antennas on non-magnetic material.
文摘A compact dual band antenna made of high dielectric constant substrate is studied. Embedding a higher dielectric cylindrical inside the substrate host cylindrical enhances the dual band behaviour. The first part displays the characteristics of single CRDA as return loss, bandwidth and radiation pattern, then, the second part describes the aim of using an antenna, composed by the arrangement of two cylindrical resonators in which the smallest is inserted in the largest, to lead dual-frequency behaviour, and achieve a dual-band antenna. The proposed antennas are investigated using Finite Element Method (FEM), the impedance matching dual band definition and covers the Ultra High Frequency band (UHF).
基金The author would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project Number R-2022-71.
文摘In this study,a compact 2×2 interlaced sequentially rotated dual-polarized dielectric-resonator antenna array is proposed for 5.8 GHz applications.The array is composed of a novel unit elements that are made of rectangular dielectric resonator(RDR)coupled to an eye slot for generating the orthogonal modes,TEδx 21 and TE1yδ1 to acquire circular polarization(CP)radiation.For the purpose of miniaturization and achieving dual polarized resonance,the array is fed by two interlaced ports and each port excites two radiating elements.The first port feeds horizontal elements to obtain left hand circular polarization(LHCP).The second port feeds vertical elements to obtain right hand circular polarization(RHCP).A quarter-wave length transformer is employed to reduce the attenuation and consequently increase the array gain performance.The 35×35 mm2(0.676λ0×0.676λ0)gains were 8.4 and 8.2 dBi for port 1 and port 2,respectively,with port isolations of−33.51 dB.The design achieves a voltage standing-wave ratio(VSWR)<−10 dB and an axial ratio(AR)<−3 dB bandwidth of 2.48%(5.766 to 5.911 GHz)for LHCP at port 1 and a VSWR<−10 dB and AR<−3 dB bandwidth of 2.28%(5.788 to 5.922 GHz)for RHCP at port 2.The findings of the proposed design validate its use for ISM band applications.
文摘This paper presents a low profile dual polarized directional antenna composed of loop and dipole arrays mounted on a ground plane with each loops and dipoles being fed independently. Each loop antenna is paired with a reflector while each dipole antenna is paired with a director and a reflector. The proposed antenna is intended for an indoor base station (BS) with resonance frequency of 2.4 GHz and capable of producing four orthogonal directional pattern with downward elevation angle equals to 30°;and half power bandwidth (HPBW) less than 80°;in both vertical and horizontal polarization. The reflection characteristics of the loop and dipole arrays are less than -10 dB and the mutual coupling between the vertical and horizontal polarization elements is nearly less than -20 dB. In later progress, the dipole antenna was substituted with printed dipole antenna to achieve a better performance. Both the calculated and measured results demonstrated that the desired radiation patterns were achieved, and the measured results agreed well with the calculated ones. Consequently, a low profile antenna with a thickness of 0.16 λ (20 mm) having the expected radiation pattern is successfully designed.
文摘In this article, a low-profile wideband dual-polarized planar printed dipole antenna, fed by coaxial lines, is investigated for the TD-SCDMA operation. The antenna is composed of two printed dipoles, two pairs of feeding coaxial lines and a ground. The single-polarized planar printed rectangular dipole and petal dipole, with the similar configuration, are first studied, exhibiting the potential wideband operation. Two petal dipoles are then cross-arranged to design a dual-polarized planar printed antenna, giving a lower profile and a better bandwidth covering the Chinese TD-SCDMA band (1880-2400 MHz). The dual-polarized antenna is simply excited by two pairs of coaxial feeds. Simulated and measured results show that the antenna achieves a common impedance bandwidth of 42% at both ports, good isolation of more than 25 dB, stable radiation patterns and the gain of about 7 dBi over the operating bandwidth.
文摘The dual band equilateral triangular microstrip antennas are realized by cutting the slots of either quarter wave or half wave in length, inside the patch. In this design, however these simpler approximations of slot length against the frequency do not give closer results for different slot lengths and there positions inside the patch. In this paper, the modal variations of slot cut patch antennas over wide frequency range are studied. It is observed that the slot does not introduce any mode but reduces the higher order mode resonance frequency of the patch and along with the fundamental mode realizes dual band response. The formulations of the resonant length for the mode introduce by the slots in these antennas are proposed. The resonance frequencies calculated using proposed formulations agree well with the simulated results with an error of less than 5%.
文摘A low profile dual-band multiple-input-multiple-output (MIMO) antenna system is proposed. The proposed MIMO antenna consists of two low profile unbalanced fed inverted L antennas with parasitic elements to resonate at 2.45 GHz and 5 GHz. The structure is uncomplicated by locating two ultra low profile inverted L antennas on the finite conducting plane. The proposed MIMO antenna is numerically and experimentally analyzed. When the size of conducting plane is 55 mm by 55 mm and the height of antenna is 9 mm, the directive gain of 4.11 dBi and the S11 bandwidth of 5.71% are achieved for lower frequency of 2.45 GHz. At the upper frequency of 5 GHz, the directive gain of 8.22 dBi and the S11 bandwidth of 6% are obtained. The proposed antenna has good diversity gain, shown by the correlation coefficient becomes less than 0.005 at the frequency of 2.45 GHz and 5 GHz band when the distance between inverted L elements is 41 mm. A good agreement between calculated and measured results is obtained. The results show that the weak mutual coupling of the proposed antenna and this feature enables it to cover the required bandwidths for WLAN operation at the 2.4 GHz band and 5 GHz band.
文摘An user-oriented computer software consisting of three modeling codes, named DRAD, DRAA and FDPAT, is introduced. It can be used to design three types of Cassegrain system: classical, with shaped subreflector and with dual shaped reflectors, and to analyse radiation patterns for the antennas. Several mathematical models and numerical techniques are presented.
文摘Characteristics of a single-feed dual-frequency bow-tie microstrip antenna are studied. By using the variation method, simple formulas for resonant frequencies of the bow-tie microstrip antenna are derived. It is shown that the dual-frequency ratio can be controlled easily by choosing the parameters of the antenna. This design gives compact antenna size and simple antenna structure. Experimental results are presented, verifying the validity of the design.
文摘This paper focuses on the application of plasma as wireless antenna. In order to reveal the radiation characteristics of column plasma antenna, we chose the finite-difference time- domain (FDTD) numerical analysis method to simulate radiation impedance and efficiencies of each channel for a few sets of plasma densities and plasma collision frequencies. Simulation results demonstrate that a plasma antenna shares similar characteristics with a metallic antenna in radiation impedance and efficiency of each channel when an appropriate setting is adopted. Unlike a metallic antenna, a plasma antenna is capable of realizing such functions as dynamic reconfiguration, digital control and dual-channel communication. Thus it is possible to carry out dual-channel communication by plasma antenna, indicating a new path for modern intelligent communication.
文摘In this paper a design of single layer rectangular notch microstrip antenna for dual-band is proposed and experimentally investigated. This antenna is excited by microstrip line. Direct microstrip coupling with proper matching transformer has been used. Design is made for optimized notch dimension for two resonant frequencies. These resonance frequencies change with the variation in length and width of the notch. The input impedance and VSWR have been measured with the help of Network analyzer. It is found that the input impedance and VSWR depends variation in length and width of the notch microstrip antenna.
文摘A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range (2.86 to 4.63 GHz). It is basically a low cost, light weight medium gain antenna, which is used for mobile communication. The variations of the length and width (1mm) of the stacked rectangular patch antenna have been done. And it is found dual resonance with increasing lower resonance frequency and almost constant upper resonance frequency with increases of the length & width of rectangular microstrip antenna. The input impedance and VSWR, return loss have been measured with the help of Network analyzer.