The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanica...The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanical behavior of this process, it is necessary to establish a reasonable heat source model. Two different surface-body combination heat source models are adopted in this paper. Both models use the Gaussian surface heat source model and one is combined with the cone body heat source model and the other is combined with Gaussian rotator body heat source model. The simulation results of these two different models are investigated. And the temperature field results of DLBSW process for T-joint with two different heat sources are discussed. It is indicated that the combination heat source model is effective to simulate the DLBSW process and the current study is useful for more profound research in this field.展开更多
基金The research is sponsored by the Shanghai STCSM Project of the Postdoctoral Science Research Assistant Plan (10R21421200), the National Natural Science Foundation of China (50904038) and the China Postdoctoral Science Foundation (20100470064).
文摘The DLBSW( dual laser-beam bilateral synchronous welding) technology of T-type joint has been widely used for the connection of skins and stringers in airplane industry. To understand the thermodynamic and mechanical behavior of this process, it is necessary to establish a reasonable heat source model. Two different surface-body combination heat source models are adopted in this paper. Both models use the Gaussian surface heat source model and one is combined with the cone body heat source model and the other is combined with Gaussian rotator body heat source model. The simulation results of these two different models are investigated. And the temperature field results of DLBSW process for T-joint with two different heat sources are discussed. It is indicated that the combination heat source model is effective to simulate the DLBSW process and the current study is useful for more profound research in this field.