In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST...In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.展开更多
The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, in...The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.展开更多
For the characteristics of the continuous stirred-tank reactor(CSTR) with coil and jacket cooling system,a CSTR temperature dual control solution based on the analysis of the CSTR exothermic reaction control character...For the characteristics of the continuous stirred-tank reactor(CSTR) with coil and jacket cooling system,a CSTR temperature dual control solution based on the analysis of the CSTR exothermic reaction control characteristic was proposed for an organic material polymerization production.The control solution has passive fault-tolerant ability for the jacket cooling water cutting off fault and active fault-tolerant potential for the coil cooling water cutting off fault,and it has good control ability,high saving energy and reducing consumption performance.Fault detection and diagnosis and fault-tolerant control strategy are designed for the coil cooling fault to achieve the active fault-tolerant control function.The CSTR temperature dual control,process fault detection and diagnosis and active fault-tolerant control were full integrated into the CSTR temperature fault-tolerant control system,which achieve fault tolerance control of CSTR temperature for any severe malfunction of jacket cooling or coil cooling cutting off,and the security for CSTR exothermic reaction is improved.Finally,the effectiveness of this system was validated by semi-physical simulation experiment.展开更多
A novel dual control method is proposed for the stochastic systems with unknown parameters, which converts the unsolvable dynamic programming problem into a tractable twostep ahead minimum variance control problem in ...A novel dual control method is proposed for the stochastic systems with unknown parameters, which converts the unsolvable dynamic programming problem into a tractable twostep ahead minimum variance control problem in a stochastic suboptimal view. Innovation variance is used to improve the learning effect, and the instant weight is introduced to reduce the influence of the future output estimation error on the system. Simulation results show the satisfactory performance of the new controller.展开更多
Total Contamination Control helps Texhong Group to be recognized in a new market One of the top ten spinning mills in China,Texhong Group has grown steadily since its establishment in1997,building a reputation for hig...Total Contamination Control helps Texhong Group to be recognized in a new market One of the top ten spinning mills in China,Texhong Group has grown steadily since its establishment in1997,building a reputation for high value-added products in challenging market sectors such as展开更多
This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncer...This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.展开更多
The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechani...The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechanics can be properly assumed steady and linear, are presented and discussed. The design criteria of an improved version of the Advanced Lung Ventilation System (ALVS), including HEM in its functional features, are described in details. In particular, the elimination of any undesiderable artificial distortion affecting the respiratory and ventilation pattern waveforms is achieved by maintaining continuous forever the airflow inside the ventilation circuit, ensuring also the highest level of safety for patient in any condition. In such a way, the full-time compatibility of controlled breathings with spontaneous breathing activity of patient during continuous positive airways pressure (CPAP) or bilevel positive airways pressure (BiPAP) ventilation modalities and during assisted/controlled ventilation(A/CV), includeing also synchronized or triggered ventilation modalities, is an intrinsic innovative feature of the system available for clinical application. As expected and according to the clinical requirements, HEM provides for physiological respiratory and ventilation pattern waveforms together with optimal “breath to breath” feedback control of lung volume driven by an improved diagnostic measurement procedure, whose outputs are also vital for adapting all the preset ventilation parameters to the current value of the respiratory parameters of patient. The results produced by software simulations concerning both adult and neonatal patients in different clinical conditions are completely consistent with those obtained by the theoretical treatment, showing that HEM reaches the best performances from both clinical and engineering points of view.展开更多
The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonli...The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonlinear systems is used to compute the terminal regions and terminal control laws with some free-parameters in the dual-mode NMPC framework.The parameters of the terminal controller are selected offline to estimate the terminal region as large as possible;and the parameters are optimized online to gain optimality of the terminal controller with respect to given cost functions.Then a dual-mode NMPC algorithm with varying time-horizon is formulated for the constrained system.Recursive feasibility and closed-loop stability of this NMPC are established.The example of a spring-cart is used to demonstrate the advantages of the presented scheme by comparing to the dual-mode NMPC via the linear quadratic regulator(LQR) method.展开更多
This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control law...This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method.展开更多
For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were det...For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were determined and verified according to the power requirements.The system's mathematical model was established,and a decoupled control method was put forward on the basis of the instantaneous reactive power theory.For the voltage building-up,a voltage control strategy was designed on the basis of mixed reactive power compensation to implement stabilized 28V and 270V outputs simultaneously.The simulation results show that the stabilization accuracy and disturbance rejection ability of the system are improved much more than other ordinary generators.展开更多
The purpose of this research is to quantify the effects of compositional and processing parameters on the microstruc-ture and properties of dual phase steel produced directly by hot rolling and rapid cooling. Steels w...The purpose of this research is to quantify the effects of compositional and processing parameters on the microstruc-ture and properties of dual phase steel produced directly by hot rolling and rapid cooling. Steels with the base composition of 0.1%C, 1.4%Si, and 1.0%Mn with additions of 0.5%Cr to influence hardenability, 0.04%Nb to retard recrystallization in the latter stages of rolling, or 0.02%Ti to inhibit grain growth during and after reheating were investigated. Investigation was made to predict microstructure evolution and to correlate microstructure with processing parameters. The effects of the important microstructure parameters such as ferrite grain size, martensite volume fraction (VM) and morphology (polygonal or fibrous) on the tensile and impact properties are discussed. Multiple linear regression analysis of the ultimate tensile strength has shown that, increasing VM and martensite microhardness and grain refinement of ferrite are the major contributions to increase the strength of the steel. It was found that the dual-phase steel produced by controlled rolling process, with a microstructure which consisted of fine grained ferrite (4 um) and 35%~40% fibrous martensite, presented optimum tensile and impact properties because of enhanced resistance to crack propagation.展开更多
In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impu...In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.展开更多
Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise...Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results.展开更多
This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset pr...This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.展开更多
Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on E...Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.展开更多
A digital controlled alternating electromagnetic stirring generator is proposed in this paper. The main circuit of the generator makes use of dual inverter structure among which the former inverter uses full bridge ze...A digital controlled alternating electromagnetic stirring generator is proposed in this paper. The main circuit of the generator makes use of dual inverter structure among which the former inverter uses full bridge zero voltage switching topology and the latter inverter uses full bridge inverter circuit. To improve the dynamic response performance, the inverting frequency of the former inverter is as high us 100 kHz. The Cortex-M3 kernel based ARM microcontroller LM3S818 is adopted as the cybernetics core of the digital control system to achieve accurate, stable and flexible control of the generator. All the PWM signals for the former and latter inverters are generated by the LM3S818 directly. The constant current characteristic of the former inverter is obtained through current close-loop feedback control, and can ensure the operation safety when the output current waveform is at zero crossing point. Both simulation and experiment results show that the proposed generator is with such advantages as wide soft-switching range, perfect control accuracy and flexible waveform modulation, and can fulfill the requirements of electromagnetic stirring process.展开更多
We propose an approach of long-term stabilization of optical fiber phase by controlling a piezo-based phase modulator and a Peltier component attached to the fiber via a phase-locked loop( PLL) circuit w ith dual prop...We propose an approach of long-term stabilization of optical fiber phase by controlling a piezo-based phase modulator and a Peltier component attached to the fiber via a phase-locked loop( PLL) circuit w ith dual proportional-integral- derivative( PID) adjustment. With this approach,we can suppress the fast disturbance and slow drifting of optical fiber to satisfy the requirements of optical phase long-term locking. In theory,a mathematical model of an optical fiber phase control system is established. The disturbance term induced by environment influence is considered into the PLL model. The monotonous and continuous changing environment disturbance w ill cause a steady-state error in this theory model. The experimental results accords w ell w ith the theory. The steady-state performance,adjusting time,and overshoot can be improved by using the dual PID control. As a result,the long-term,highly stable and low noise fiber phase locking is realized experimentally.展开更多
The C-Mn and C-Mn-Nb steels were thermo-mechanically processed to develop dual phase steel and to study the effect of controlled rolling on the martensitic hardenability of austenite. The steel specimens were intercri...The C-Mn and C-Mn-Nb steels were thermo-mechanically processed to develop dual phase steel and to study the effect of controlled rolling on the martensitic hardenability of austenite. The steel specimens were intercritically annealed at 790℃, rolled at that temperature to the reductions of 10%, 23%, and 47% and immediately cooled at different rates. Quantitative metallography was used to construct the microstructure map, which illustrated that increasing deformation progressively reduced the proportion of new ferrite formed at all cooling rates and increased the amount of martensite at fast and intermediate rates. The martensitic hardenability of austenite remaining after all the rolling reductions was plotted as a function of cooling rates. It was observed that for the austenite-martensite conversion efficiencies greater than about 25%, controlled rolling increased the martensitic hardenability of austenite.展开更多
文摘In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model.
基金supported by the Major National Science and Technology Program of China (grants No. 2016ZX05041004)the National Natural Science Foundation of China (grant No. 41572090)High-level Talent Recruitment Project of North China University of Water Resource and Electric (grant No. 40481)
文摘The uranium deposits in the Tuanyushan area of northern Qaidam Basin commonly occur in coal-bearing series. To decipher the U-enrichment mechanism and controlling factors in this area, a database of 72 drill cores, including 56 well-logs and 3 sampling wells, was examined for sedimentology and geochemistry in relation to uranium concentrations. The results show that coal-bearing series can influence uranium mineralization from two aspects, i.e., spatial distribution and dynamic control. Five types of uranium-bearing rocks are recognized, mainly occurring in the braided river and braided delta sedimentary facies, among which sandstones near the coals are the most important. The lithological associations of sandstone-type uranium deposits can be classified into three subtypes, termed as U-coal type, coal-U-coal type, and coal-U type, respectively. The coal and fine siliciclastic rocks in the coal- bearing series confined the U-rich fluid flow and uranium accumulation in the sandstone near them. Thus, the coal-bearing series can provide good accommodations for uranium mineralization. Coals and organic matters in the coal-bearing series may have served as reducing agents and absorbing barriers. Methane is deemed to be the main acidolysis hydrocarbon in the U-bearing beds, which shows a positive correlation with U-content in the sandstones in the coal-bearing series. Additionally, the 613C in the carbonate cements of the U-bearing sandstones indicates that the organic matters, associated with the coal around the sandstones, were involved in the carbonation, one important component of alteration in the Tuanyushan area. Recognition of the dual control of coal-bearing series on the uranium mineralization is significant for the development of coal circular economy, environmental protection during coal utilization and the security of national rare metal resources.
基金Project(2013JM8024)Supported by Natural Science Basic Research Plan in Shaanxi Province of China
文摘For the characteristics of the continuous stirred-tank reactor(CSTR) with coil and jacket cooling system,a CSTR temperature dual control solution based on the analysis of the CSTR exothermic reaction control characteristic was proposed for an organic material polymerization production.The control solution has passive fault-tolerant ability for the jacket cooling water cutting off fault and active fault-tolerant potential for the coil cooling water cutting off fault,and it has good control ability,high saving energy and reducing consumption performance.Fault detection and diagnosis and fault-tolerant control strategy are designed for the coil cooling fault to achieve the active fault-tolerant control function.The CSTR temperature dual control,process fault detection and diagnosis and active fault-tolerant control were full integrated into the CSTR temperature fault-tolerant control system,which achieve fault tolerance control of CSTR temperature for any severe malfunction of jacket cooling or coil cooling cutting off,and the security for CSTR exothermic reaction is improved.Finally,the effectiveness of this system was validated by semi-physical simulation experiment.
文摘A novel dual control method is proposed for the stochastic systems with unknown parameters, which converts the unsolvable dynamic programming problem into a tractable twostep ahead minimum variance control problem in a stochastic suboptimal view. Innovation variance is used to improve the learning effect, and the instant weight is introduced to reduce the influence of the future output estimation error on the system. Simulation results show the satisfactory performance of the new controller.
文摘Total Contamination Control helps Texhong Group to be recognized in a new market One of the top ten spinning mills in China,Texhong Group has grown steadily since its establishment in1997,building a reputation for high value-added products in challenging market sectors such as
基金the Research Grants Council of Hong Kong, P.R.China under Grant CUHK 4180/03E
文摘This paper summarizes recent progress by the authors in developing two solution frameworks for dual control. The first solution framework considers a class of dual control problems where there exists a parameter uncertainty in the observation equation of the LQG problem. An analytical active dual control law is derived by a variance minimization approach. The issue of how to determine an optimal degree of active learning is then addressed, thus achieving an optimality for this class of dual control problems. The second solution framework considers a general class of discrete-time LQG problems with unknown parameters in both state and observation equations. The best possible (partial) closed-loop feedback control law is derived by exploring the future nominal posterior probabilities, thus taking into account the effect of future learning when constructing the optimal nominal dual control.
文摘The theoretical approach along with the rationale of harmonic excitation modality (HEM) applied as optimal dual controlled ventilation (DCV) to anaesthetized or severe brain injured patients, whose respiretory mechanics can be properly assumed steady and linear, are presented and discussed. The design criteria of an improved version of the Advanced Lung Ventilation System (ALVS), including HEM in its functional features, are described in details. In particular, the elimination of any undesiderable artificial distortion affecting the respiratory and ventilation pattern waveforms is achieved by maintaining continuous forever the airflow inside the ventilation circuit, ensuring also the highest level of safety for patient in any condition. In such a way, the full-time compatibility of controlled breathings with spontaneous breathing activity of patient during continuous positive airways pressure (CPAP) or bilevel positive airways pressure (BiPAP) ventilation modalities and during assisted/controlled ventilation(A/CV), includeing also synchronized or triggered ventilation modalities, is an intrinsic innovative feature of the system available for clinical application. As expected and according to the clinical requirements, HEM provides for physiological respiratory and ventilation pattern waveforms together with optimal “breath to breath” feedback control of lung volume driven by an improved diagnostic measurement procedure, whose outputs are also vital for adapting all the preset ventilation parameters to the current value of the respiratory parameters of patient. The results produced by software simulations concerning both adult and neonatal patients in different clinical conditions are completely consistent with those obtained by the theoretical treatment, showing that HEM reaches the best performances from both clinical and engineering points of view.
基金supported by the National Natural Science Foundation of China(613741 11)Zhejiang Provincial Natural Science Foundation of China(LR17F030004)
文摘The paper presents a new dual-mode nonlinear model predictive control(NMPC) scheme for continuous-time nonlinear systems subject to constraints on the state and control.The idea of control Lyapunov functions for nonlinear systems is used to compute the terminal regions and terminal control laws with some free-parameters in the dual-mode NMPC framework.The parameters of the terminal controller are selected offline to estimate the terminal region as large as possible;and the parameters are optimized online to gain optimality of the terminal controller with respect to given cost functions.Then a dual-mode NMPC algorithm with varying time-horizon is formulated for the constrained system.Recursive feasibility and closed-loop stability of this NMPC are established.The example of a spring-cart is used to demonstrate the advantages of the presented scheme by comparing to the dual-mode NMPC via the linear quadratic regulator(LQR) method.
文摘This paper proposes a new type of control laws for free rigid bodies. The start point is the dual quaternion and its characteristics. The logarithm of a dual quaternion is defined, based on which kinematic control laws can be developed. Global exponential convergence is achieved using logarithmic feedback via a generalized proportional control law, and an appropriate Lyapunov function is constructed to prove the stability. Both the regulation and tracking problems are tackled. Omnidirectional control is discussed as a case study. As the control laws can handle the interconnection between the rotation and translation of a rigid body, they are shown to be more applicable than the conventional method.
文摘For the bi-power system adopted widely in future armored vehicles,a hybrid power generator with dual stator-winding was proposed.Its structure and working principle were analyzed first,and its main parameters were determined and verified according to the power requirements.The system's mathematical model was established,and a decoupled control method was put forward on the basis of the instantaneous reactive power theory.For the voltage building-up,a voltage control strategy was designed on the basis of mixed reactive power compensation to implement stabilized 28V and 270V outputs simultaneously.The simulation results show that the stabilization accuracy and disturbance rejection ability of the system are improved much more than other ordinary generators.
基金The author is grateful to the head and asedemic stall of Me-chs,llical Eng.Dept.andAInrkabir UniV6rsity ofTechnologyu-thority for the support in preseWOrk.IWOuld like ho thankk ProLC.M.Sellars who taught me humanity and acadenie reseach pro
文摘The purpose of this research is to quantify the effects of compositional and processing parameters on the microstruc-ture and properties of dual phase steel produced directly by hot rolling and rapid cooling. Steels with the base composition of 0.1%C, 1.4%Si, and 1.0%Mn with additions of 0.5%Cr to influence hardenability, 0.04%Nb to retard recrystallization in the latter stages of rolling, or 0.02%Ti to inhibit grain growth during and after reheating were investigated. Investigation was made to predict microstructure evolution and to correlate microstructure with processing parameters. The effects of the important microstructure parameters such as ferrite grain size, martensite volume fraction (VM) and morphology (polygonal or fibrous) on the tensile and impact properties are discussed. Multiple linear regression analysis of the ultimate tensile strength has shown that, increasing VM and martensite microhardness and grain refinement of ferrite are the major contributions to increase the strength of the steel. It was found that the dual-phase steel produced by controlled rolling process, with a microstructure which consisted of fine grained ferrite (4 um) and 35%~40% fibrous martensite, presented optimum tensile and impact properties because of enhanced resistance to crack propagation.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation of China (Grant No 20062018)State Key Development Program for Basic research of China (Grant No 2009CB320601)111 Project,China (Grant No B08015)
文摘In this paper, an improved impulsive lag synchronization scheme for different chaotic systems with parametric uncertainties is proposed. Based on the new definition of synchronization with error bound and a novel impulsive control scheme (the so-called dual-stage impulsive control), some new and less conservative sufficient conditions are established to guarantee that the error dynamics can converge to a predetermined level, which is more reasonable and rigorous than the existing results. In particular, some simpler and more convenient conditions are derived by taking the same impulsive distances and control gains. Finally, some numerical simulations for the Lorenz system and the Chen system are given to demonstrate the effectiveness and feasibility of the proposed method.
文摘Existing literature has shown that the control force at the nose could cause dynamic instability for controlled projectiles. To lower the adverse impact on the dual-spin projectile with fixed canards under the premise of meeting guidance system requirements, the influence of control moment provided by a motor on the flight stability is analyzed in this paper. Firstly, the effect of the rolling movement on stability is analyzed based on the stability criterion derived using the Hurwitz stability theory. Secondly, the evaluation parameters combining the features of different control periods that could assess the variation of stability features after the motor torque are obtained. These effective formulas are used to indicate that, to reduce the flight instability risks, the stabilized rolling speed of roll speed keeping period should be as small as possible; the variation trend of motor torque during the rolling speed controlling period and the roll angle of the forward body during roll angle switching period are recommended corresponding to the projectile and trajectory characteristics. Moreover,detailed numerical simulations of 155 mm dual-spin projectile are satisfactory agreement with the theoretical results.
文摘This work proposes to design a fuzzy proportional-integral derivative (FPID) controller for dual-sensor cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The combination of fuzzy logic and conventional PID control approaches is adopted for the controller design based on dual-sensors. This controller offers good adaptation of the heart rate to the physiological needs of the patient under different states (rest and walk). Through comparing with the conventional fuzzy control algorithm, FPID provides a more suitable control strategy to determine a pacing rate in order to achieve a closer match between actual heart rate and a desired profile. To assist the heartbeat recovery, the stimuli with adjustable pacing rate is generated by the pacemaker according to the FPID controller, such actual heart rate may track the preset heart rate faithfully. Simulation results confirm that this proposed control design is effective for heartbeat recovery and maintenance. This study will be helpful not only for the analysis and treatment of bradycardias but also for improving the performance of medical devices.
基金Supported by Doctoral Fund of Ministry of Education of China(20101101110012)the National Natural Science Foundationof China(51175040)
文摘Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.
基金Supported by National Natural science Foundation-of P.R.Chlna (60474038, 60774022), Specialized Research Fund for the Doctoral Program of Higher Educatlon(20060004002)
基金This investigation is supported by National Natural Science Foundation of China (No. 51375173 ) and Guangdong Provincial Science and Technology Project ( No. 2013B010402007, No. 2013B011302006, No. 2014B010104002). (South China University of Technology, Guangzhou, 510640. )
文摘A digital controlled alternating electromagnetic stirring generator is proposed in this paper. The main circuit of the generator makes use of dual inverter structure among which the former inverter uses full bridge zero voltage switching topology and the latter inverter uses full bridge inverter circuit. To improve the dynamic response performance, the inverting frequency of the former inverter is as high us 100 kHz. The Cortex-M3 kernel based ARM microcontroller LM3S818 is adopted as the cybernetics core of the digital control system to achieve accurate, stable and flexible control of the generator. All the PWM signals for the former and latter inverters are generated by the LM3S818 directly. The constant current characteristic of the former inverter is obtained through current close-loop feedback control, and can ensure the operation safety when the output current waveform is at zero crossing point. Both simulation and experiment results show that the proposed generator is with such advantages as wide soft-switching range, perfect control accuracy and flexible waveform modulation, and can fulfill the requirements of electromagnetic stirring process.
基金supported by the National Natural Science Foundation of China(Grant No.91436103)Research Programme of National University of Defense Technology(Grant No.JC15-02-03)
文摘We propose an approach of long-term stabilization of optical fiber phase by controlling a piezo-based phase modulator and a Peltier component attached to the fiber via a phase-locked loop( PLL) circuit w ith dual proportional-integral- derivative( PID) adjustment. With this approach,we can suppress the fast disturbance and slow drifting of optical fiber to satisfy the requirements of optical phase long-term locking. In theory,a mathematical model of an optical fiber phase control system is established. The disturbance term induced by environment influence is considered into the PLL model. The monotonous and continuous changing environment disturbance w ill cause a steady-state error in this theory model. The experimental results accords w ell w ith the theory. The steady-state performance,adjusting time,and overshoot can be improved by using the dual PID control. As a result,the long-term,highly stable and low noise fiber phase locking is realized experimentally.
文摘The C-Mn and C-Mn-Nb steels were thermo-mechanically processed to develop dual phase steel and to study the effect of controlled rolling on the martensitic hardenability of austenite. The steel specimens were intercritically annealed at 790℃, rolled at that temperature to the reductions of 10%, 23%, and 47% and immediately cooled at different rates. Quantitative metallography was used to construct the microstructure map, which illustrated that increasing deformation progressively reduced the proportion of new ferrite formed at all cooling rates and increased the amount of martensite at fast and intermediate rates. The martensitic hardenability of austenite remaining after all the rolling reductions was plotted as a function of cooling rates. It was observed that for the austenite-martensite conversion efficiencies greater than about 25%, controlled rolling increased the martensitic hardenability of austenite.