In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoin...In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoint. A parametric study is conducted to determine the effect of high-stage pressure<span><span><span style="font-family:;" "=""><span></span><span><span> </span>and low-stage pressure</span><span></span><span><span> </span>variation on the system thermodynamic and exergoeconomic performance. The DORC is further optimized to obtain maximum exergy efficiency optimized design (EEOD case) and minimum product cost</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">optimized design (PCOD case). The exergy efficiency and unit cost of power produced for the optimization of EEOD case and PCOD case are 33.03% and 3.059 cent/kWh, which are 0.3% and 17.4% improvement over base case, respectively. The PCOD case proved to be the best, with respect to minimum unit cost of power produced and net power output over the base case and EEOD case.展开更多
Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas...Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance.展开更多
In the metal-based peroxymonosulfate(PMS)activation process,the sluggish surface redox cycle of metal ions generally hampered the efficiency of PMS activation for pollutant removal.Herein,Codoped CuWO 4/BN quantum dot...In the metal-based peroxymonosulfate(PMS)activation process,the sluggish surface redox cycle of metal ions generally hampered the efficiency of PMS activation for pollutant removal.Herein,Codoped CuWO 4/BN quantum dots(CW/Co/BNQDs)photocatalysts were developed to realize Cu^(2+)/Cu+and Co^(2+)/Co^(3+)dual ions redox cycles for PMS activation,which would facilitate the tetracycline(TC)removal.CW/4Co/2BNQDs could degrade 94.8%TC within 30 min in PMS/Vis system,and the apparent rate constant of CW/4Co/2BNQDs was 2.7 times and 1.2 times higher than those of CW and CW/4Co,respectively.The improved TC degradation performance could be attributed to the synergetic effect between BNQDs and dual redox cycles.X-ray photoelectron spectroscopy(XPS)spectra of samples before and after the reaction demonstrated that BNQDs were beneficial for accelerating the Cu^(2+)/Cu+and Co^(2+)/Co^(3+)redox cycles in CW/4Co/2BNQDs,further boosting the activation of PMS in TC degradation.Experiments of different radical scavengers revealed that the SO_(4)^(·−)/·OH/h+/^(1)O_(2)reactive species participated in the PMS activation for the TC degradation process.The possible TC degradation pathway and intermediate toxicity were detailed investigated.In addition,CW/4Co/2BNQDs exhibited outstanding photocatalytic activity over five consecutive cycles,which illustrated that it was supposed to be a reliable PMS activator over antibiotic elimination for practical application.And this work shed new light on constructing dual redox cycles for efficient PMS activation.展开更多
文摘In the present study, a dual-pressure organic Rankine cycle (DORC) driven by geothermal hot water for electricity production is developed, investigated and optimized from the energy, exergy and exergoeconomic viewpoint. A parametric study is conducted to determine the effect of high-stage pressure<span><span><span style="font-family:;" "=""><span></span><span><span> </span>and low-stage pressure</span><span></span><span><span> </span>variation on the system thermodynamic and exergoeconomic performance. The DORC is further optimized to obtain maximum exergy efficiency optimized design (EEOD case) and minimum product cost</span></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "="">optimized design (PCOD case). The exergy efficiency and unit cost of power produced for the optimization of EEOD case and PCOD case are 33.03% and 3.059 cent/kWh, which are 0.3% and 17.4% improvement over base case, respectively. The PCOD case proved to be the best, with respect to minimum unit cost of power produced and net power output over the base case and EEOD case.
文摘Recovery and purification of ethane has a significant impact on economic benefit improvement of the high-ethane content natural gas.However,current LNG-NGL integrated processes mainly focus on conventional natural gas,which are not applicable to natural gas with high ethane content.To fill this gap,three dual mixed refrigerant processes are proposed for simulation study of high-ethane content natural gas liquefaction.The proposed processes are optimized by a combination method of sequence optimization and genetic algorithm.Comparatively analysis is conducted to evaluate the three processes from the energetic and exergetic points of view.The results show that the power consumption of Process 3 which compressing natural gas after distillation is the lowest.For safety or other considerations,some common compositions of the mixed refrigerant may need to be removed under certain circumstances.Considering this,case studies of mixed refrigerant involving six composition combinations are carried out to investigate the effects of refrigerant selection on the process performance.
基金the financial support of this work from the National Natural Science Foundation of China(No.22172064)the Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality(BK20220023)+1 种基金the foundation of Key Laboratory of Synthetic and Biological Colloids,Ministry of Education,Jiangnan University(No.1042050205225990/009)National Laboratory of Solid State Microstructures,Nanjing University(No.M34047).
文摘In the metal-based peroxymonosulfate(PMS)activation process,the sluggish surface redox cycle of metal ions generally hampered the efficiency of PMS activation for pollutant removal.Herein,Codoped CuWO 4/BN quantum dots(CW/Co/BNQDs)photocatalysts were developed to realize Cu^(2+)/Cu+and Co^(2+)/Co^(3+)dual ions redox cycles for PMS activation,which would facilitate the tetracycline(TC)removal.CW/4Co/2BNQDs could degrade 94.8%TC within 30 min in PMS/Vis system,and the apparent rate constant of CW/4Co/2BNQDs was 2.7 times and 1.2 times higher than those of CW and CW/4Co,respectively.The improved TC degradation performance could be attributed to the synergetic effect between BNQDs and dual redox cycles.X-ray photoelectron spectroscopy(XPS)spectra of samples before and after the reaction demonstrated that BNQDs were beneficial for accelerating the Cu^(2+)/Cu+and Co^(2+)/Co^(3+)redox cycles in CW/4Co/2BNQDs,further boosting the activation of PMS in TC degradation.Experiments of different radical scavengers revealed that the SO_(4)^(·−)/·OH/h+/^(1)O_(2)reactive species participated in the PMS activation for the TC degradation process.The possible TC degradation pathway and intermediate toxicity were detailed investigated.In addition,CW/4Co/2BNQDs exhibited outstanding photocatalytic activity over five consecutive cycles,which illustrated that it was supposed to be a reliable PMS activator over antibiotic elimination for practical application.And this work shed new light on constructing dual redox cycles for efficient PMS activation.