Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving the imaging quality of esophageal cancer patients. Materials and methods: 68...Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving the imaging quality of esophageal cancer patients. Materials and methods: 68 patients with clinically suspected esophageal cancer (all confirmed by pathology) were collected. Routine plain scan was performed with SIEMENS Force dual-energy CT and then dual-phase scans were performed. The venous phase images were respectively subjected to traditional virtual monoenergetic reconstructions (Mono_E) and new generation virtual monoenergetic reconstructions (Mono+). Mono_E 55 keV and Mono+ 55 keV virtual single-energy images were obtained respectively. The signal-to-noise ratio (SNR) of normal esophageal tissue and esophageal cancer lesions, noise and contrast noise ratio (CNR tumor) of normal esophageal tissue and esophageal cancer lesions were compared among 100 kV images, Mono_E images and Mono+ images. At the same time, two imaging physicians read the films and scored the images of each group by using a 5-point scoring method. Results: Mono+ 55 keV images, SNR, SNRtumor, noise and CNRtumor were statistically different from those of 100 kV images and Mono_E images (P < 0.05). And Mono+ 55 keV images also had the highest subjective score, with statistical significance (P 55 keV images had the best quality. Conclusion: The new generation of virtual monoenergetic reconstructions post-processing (Mono+) could reduce image noise and improve the contrast between esophageal cancer lesions and normal esophageal tissues, which was of great significance to improve the imaging quality of esophageal cancer patients and improve the early detection rate of esophageal cancer.展开更多
Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving image quality for portal vein system of pancreatic cancer patients. Material...Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving image quality for portal vein system of pancreatic cancer patients. Materials and methods: 47 patients with clinically suspected pancreatic cancer (all confirmed by pathology) were collected. Routine plain scan was performed with Siemens Force dual-source dual-energy CT followed by 3 scans respectively carried out in arterial phase, portal phase and delayed phase. Traditional virtual monoenergetic reconstructions (Mono_E) and new generation of virtual monoenergetic reconstructions (Mono+) were respectively performed on portal vein images to obtain virtual single energy images including Mono_ E70 keV, Mono_E 55 keV and Mono+ 70 keV and Mono+ 55 keV. The signal-to-noise ratio (SNR) and noise of portal vein, normal pancreatic tissues and pancreatic lesions of 100 kV, Mono_E and Mono+ images were compared. In addition, the contrast noise ratio of portal vein and lesions as well as pancreatic tissues and lesions (CNR PV, CNRtumor) were also compared. At the same time, two imaging physicians with rich clinical experiences read the films and scored the images of each group by using the 5-point scoring method. Results: Mono+ 55 keV images including SNRpv, SNRpanc, SNRtumor, Noise, CNRpv, CNRtumor were statistically different from 100 KV images and Mono_E images (P < 0.05). As for the subjective score, Mono+ 55 keV image score also had the highest score, which had statistical significance (P < 0.05). The results showed that Mono+ 55 keV images had the best quality. Conclusion: The new generation of virtual Mono+ post-treatment can reduce image noise. Low energy Mono+ images can improve the contrast between pancreatic cancer lesions and portal of pancreatic cancer patients.展开更多
Objective: To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) durin...Objective: To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Methods: Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. Results: In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. Conclusions: We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.展开更多
The measurement of electron density is important for medical diagnosis and charged particle radiotherapy treatment planning.Traditionally,electron density is obtained by CT imaging using the relationship between CT-nu...The measurement of electron density is important for medical diagnosis and charged particle radiotherapy treatment planning.Traditionally,electron density is obtained by CT imaging using the relationship between CT-number and electron densities established beforehand.However,the measurement is not accurate due to the beam hardening effect.In this paper,we propose a simple and practical electron density acquisition method based on dual-energy CT technique.For each sample,the CT imaging is conducted using two selected X-ray energy from synchrotron radiation.A post-processing dual-energy reconstruction method is used.Linear attenuation coefficients of the scanned samples are obtained by FBP reconstruction.The effective atomic number and electron density are got by solving the dual-energy simultaneous equations.Different phantoms and breast tissues were scanned in this experimental study under 10 keV and 30 keV monochromatic X-rays.The distribution of effective atomic numbers and electron densities of the scanned phantoms were obtained by Dual-energy CT image reconstruction,which agrees well with the theoretical values.Compared with conventional methods,the measurement accuracy is greatly improved, and the measurement error is reduced to about 1%.This experimental study demonstrates that DECT imaging based on synchrotron radiation source is applicable to medical diagnosis for quantitative measurement with high accuracy.展开更多
<strong>Objectives:</strong> To evaluate the diagnostic performance of the quantitative iodine parameters, including Iodine Concentration (IC), Normalized Iodine Concentration (NIC), and λ<sub>HU<...<strong>Objectives:</strong> To evaluate the diagnostic performance of the quantitative iodine parameters, including Iodine Concentration (IC), Normalized Iodine Concentration (NIC), and λ<sub>HU</sub>, in distinguishing malignant and benign thyroid nodules. <strong>Methods:</strong> Relevant studies were searched from Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure database and other complementary sources from inception to May 20, 2020. Study selection, data extraction, quality assessment, and data analyses were performed following the Cochrane standards and the PRISMA-DTA guideline. <strong>Results: </strong>Eight studies were included (595 patients with 737 thyroid nodules). The pooled sensitivity, specificity and summary diagnostic odds ratio of IC were 79% (95% CI: 69% - 86%), 76% (95% CI: 65% - 84%) and 11 (95% CI: 5 - 27) respectively;those of NIC were 78% (95% CI: 70% - 85%), 80% (95% CI: 74% - 85%) and 15 (95% CI: 9 - 24) respectively;those of λ<sub>HU</sub> were 80% (95% CI: 71% - 87%), 77% (95% CI: 70% - 83%) and 14 (95% CI: 8 - 24) respectively. <strong>Conclusion: </strong>DECT can be a potential evaluation tool for thyroid nodules. The NIC may be the most sensitive iodine parameter and could be comparable between different DECT machines in thyroid nodule assessment.展开更多
Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology a...Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent.展开更多
Objective: On the premise that the image quality meets the requirements of clinical diagnosis, we explored the methods to reduce the radiation dose of coronary artery imaging with Dual-Source CT (DSCT). Methods: We ra...Objective: On the premise that the image quality meets the requirements of clinical diagnosis, we explored the methods to reduce the radiation dose of coronary artery imaging with Dual-Source CT (DSCT). Methods: We randomly selected 200 patients with coronary heat disease (BIM 0.05). The average image noise in group A is (41.76 ± 7.98) HU, in group B the average image noise is (43.97 ± 3.88) HU, the dif- ference between the two groups was not statistically significant (P>0.05). The average CTDIvol of group A and B were (20.63 ± 2.24) mGy, (38.11 ± 10.69) mGy, respectively, then P <0.01. The average DLP of group A and B are (235.75 ± 28.64) mGycm and (492.59 ± 125.49) mGycm respectively, then P <0.01, the dif- ference of radiation dose had statistical significance (P<0.05). Conclusions: For coronary artery imaging with DSCT the heart electric pulse (AUTO) regulation technology can meet the diagnostic requirements and effectively reduce the radiation dose.展开更多
Objective: Computed tomography (CT)-based attenuation correction (CTAC) offers the clear benefit of reliable reconstruction of single-photon emission computed tomography (SPECT) images through its ability to achieve o...Objective: Computed tomography (CT)-based attenuation correction (CTAC) offers the clear benefit of reliable reconstruction of single-photon emission computed tomography (SPECT) images through its ability to achieve object-specific attenuation maps, but artifacts from dense materials often deteriorate CTAC performance. Therefore, we investigate the feasibility of CTAC in the presence of dense materials using dual-energy virtual monochromatic CT data. Methods: A sodium pertechnetate-filled cylindrical uniform phantom, with a pair of undiluted iodine syringes attached, is scanned with a dual-source CT scanner to obtain both single-energy (120 kVp) polychromatic and dual-energy (80 kVp/140 kVp with tin filtering) virtual monochromatic CT images. The single-energy and the dual-energy CT images are then converted to attenuation maps at 141 keV. SPECT images are reconstructed from 99mTc emission data of the phantom using each single-energy and dual-energy attenuation map and incorporating CTAC procedure. A region-of-in- terest analysis is performed to quantitatively compare the attenuation maps between the single-energy and the dual-energy techniques, each at an iodine-free position and a position adjacent to the iodine solutions. Results: At the iodine-free position, the phantom provides a uniform distribution of attenuation maps in both the single-energy and the dual-energy techniques. In the presence of adjacent iodine solutions, however, severe artifacts appeare in the single-energy CT images. These artifacts make attenuation values fluctuate, resulting in erroneous pixel values in the CTAC SPECT images. In contrast, dual-energy CT strongly suppresses the artifacts and hence improves the uniformity of the attenuation maps and the resultant SPECT images. Conclusions: Dual-energy CT with virtual monochromatic reconstruction has the potential to substantially reduce artifacts arising from dense materials. It has the potential to improve the accuracy of attenuation maps and the resultant CTAC SPECT images.展开更多
Objective: To compare and analyze the image quality and radiation dose of three scanning modes of dual-source CT coronary artery retrospectively, and to discuss the application value of TurboFlash coarse pitch scannin...Objective: To compare and analyze the image quality and radiation dose of three scanning modes of dual-source CT coronary artery retrospectively, and to discuss the application value of TurboFlash coarse pitch scanning mode. Methods: The imaging data of 100 patients who underwent CT coronary angiography (CCTA) using Siemens force CT retrospective gated triggering spiral scan (RES-SPIRAL), adaptive prospective gated triggering sequence scan (SEQ) and prospective coarse pitch scan (TurboFlash) retrospectively was collected. The image quality was evaluated by objective and subjective methods. The effective radiation dose of patients was compared and analyzed, and the indications of the three scanning modes were analyzed. The application value of dual-source CT TurboFlash coarse pitch scanning in coronary artery imaging was evaluated. Results: The results showed that the left main coronary artery, the right coronary artery and their tertiary branches could be clearly displayed in the three groups of images: the left anterior descending branch, the left circumflex branch, and their three-level branches. There was no statistical difference in subjective image quality among the three groups of pictures (P > 0.05). There was no statistical difference in objective evaluation indexes, such as CT value, SNR, CNR and Noise among the three groups (P > 0.05). The patient radiation dose results showed that the effective radiation dose ED of RES-SPIRA scan was (9.22 ± 1.33) mSv. The dose of SEQ was (2.88 ± 2.47) mSv, and the dose of TurboFlash was (0.51 ± 0.16) mSv. There was significant difference in comparison of the three groups (P 0.05). RES-spiral scanning had the highest radiation dose and TurboFlash coarse pitch scanning (TurboFlash) had the lowest radiation dose. Conclusion: TurboFlash coarse pitch scanning is low in dosage, fast in speed and wide in adaptability. It is especially suitable for the elderly, children, coma and other patients who cannot cooperate with breath-holding examination, as well as for the screening and examination of coronary artery diseases in asymptomatic population. Undoubtedly, it is a worthy method of heart coronary artery examination.展开更多
The influence of low tube voltage in dual source CT(DSCT) coronary artery imaging on image quality and radiation dose and its application value in clinical practice were investigated. Totally, 300 cases of chest pai...The influence of low tube voltage in dual source CT(DSCT) coronary artery imaging on image quality and radiation dose and its application value in clinical practice were investigated. Totally, 300 cases of chest pain with low body mass index(BMI 〈18.5 kg/m2) subjected to DSCT coronary artery imaging were prospectively enrolled. The heart rate in all patients were greater than 65/min. The retrospective ECG gated scanning mode and simple random sampling method were used to assign the patients into groups A, B and C(n=100 each). The patients in groups A, B and C experienced 120-, 100-, and 80-kV tube voltage imaging respectively, and the image quality was evaluated. The CT volume dose index(CTDIvol) and dose length product(DLP) were recorded, and the effective dose(ED) was calculated in each group. The image quality scores and radiation doses in groups were compared, and the influence of tube voltage on image quality and radiation dose was analyzed. The results showed that the excellent rate of image quality in groups A, B and C was 95.69%, 94.72% and 96.33% respectively with the difference being not statistically significant among the three groups(P〉0.05). The CTDIvol values in groups A, B and C were 51.35±12.21, 21.28±7.13 and 6.34±3.34 mGy, respectively, with the difference being statistically significant(P〈0.05). The ED values in groups A, B and C were 9.27±1.63, 4.56±2.29 and 2.29±1.69 mSv, respectively, with the difference being statistically significant(P〈0.05). It was suggested that for the patients with low BMI, the application of DSCT coronary artery imaging with low tube voltage can obtain satisfactory image quality, and simultaneously, significantly reduce the radiation dose.展开更多
Dual-energy X-ray absorptiometry provides two modes of head computed tomography (CT) angiography scanning: neuro-digital subtraction angiography and dual-energy CT angiography (DE-CTA). Previous studies have comp...Dual-energy X-ray absorptiometry provides two modes of head computed tomography (CT) angiography scanning: neuro-digital subtraction angiography and dual-energy CT angiography (DE-CTA). Previous studies have compared image quality, radiation exposure, and bone removal between neuro-digital subtraction angiography and DE-CTA. However, the number of cases was relatively small. The present study examined 300 suspected cases of cerebrovascular disease and observed the methods and duration of post-processing, examination time, and data volume. Results demonstrated similar image quality between the two methods, but lower radiation doses and shorter examination time in DE-CTA. DE-CTA allowed for faster and more stable scanning performance and post-processing methods, facilitating accurate and direct diagnosis of cerebrovascular disease.展开更多
To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comp...To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comparators, two microcomputers, and two frequency-voltage converters. X-ray photons are detected using the detector system, and the event pulses are input to three comparators simultaneously to determine threshold energies. At a tube voltage of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy ranges are 16 - 35 and 52 - 100 keV. X-ray photons in the two ranges are counted using microcomputers, and the logical pulses from the two microcomputers are input to two frequency-voltage converters. In dual-energy computed tomography (CT), the tube voltage and current were 100 kV and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16 - 35 and 52 - 100 keV, respectively. The maximum count rate of dual-energy CT was 105 kilocounts per second with energies ranging from 16 to 100 keV, and the exposure time for tomography was 19.6 min.展开更多
The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of...The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.展开更多
The present study aimed to investigate the possibility of using dual-energy computed tomography (CT) before therapy to discriminate between normal breast tissue and tumor tissue in patients with breast cancer, without...The present study aimed to investigate the possibility of using dual-energy computed tomography (CT) before therapy to discriminate between normal breast tissue and tumor tissue in patients with breast cancer, without the need to use a contrast medium. The following patient data were extracted by interview and from the hospital’s radiology information system: height, weight, age, menstrual cycle, CT images of normal tissue and tumors with or without contrast medium, and the histopathological diagnosis of the aspiration biopsy. The median age of the 43 participants was 56 years (range, 30 - 80 years). The CT values were evaluated using a clinical analytical program based on the three-material decomposition technique. Breast cancer was classified into ductal carcinoma in situ, invasive ductal carcinoma, invasive lobular carcinoma, fibromatosis-like metaplastic carcinoma, and apocrine carcinoma. In all conditions, regardless of contrast medium, the CT values of tumor tissues were higher than those of normal breast tissue, indicating the effectiveness of dual-energy CT (DE-CT) in the diagnosis of breast cancer. By contrast, DE-CT showed limited potential for distinguishing ductal carcinoma in situ from invasive ductal carcinoma. There have only been a few reports regarding CT examination of breast cancer, and it is expected this study encourage the development of DE-CT imaging to improve tumor detection in patients with breast cancer.展开更多
Foreign body insertion in the urethra and bladder is not uncommon and has been reported in many studies to date. However, since foreign bodies are often accidentally introduced into the urethra and bladder during mast...Foreign body insertion in the urethra and bladder is not uncommon and has been reported in many studies to date. However, since foreign bodies are often accidentally introduced into the urethra and bladder during masturbation, they take a variety of shapes and sizes. Furthermore, patient self-reports are typically unreliable as many patients feel ashamed;thus, appropriate preoperative diagnosis is critical. Diagnosis of foreign body insertion in the urethra and bladder is performed using imaging modalities such as abdominal X-ray and computed tomography (CT). However, single-energy CT (SECT) is not sufficient in detecting foreign bodies in some cases. In the present study, we report a successful preoperative identification of urethral foreign body in a patient using dual-energy CT (DECT).展开更多
文摘Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving the imaging quality of esophageal cancer patients. Materials and methods: 68 patients with clinically suspected esophageal cancer (all confirmed by pathology) were collected. Routine plain scan was performed with SIEMENS Force dual-energy CT and then dual-phase scans were performed. The venous phase images were respectively subjected to traditional virtual monoenergetic reconstructions (Mono_E) and new generation virtual monoenergetic reconstructions (Mono+). Mono_E 55 keV and Mono+ 55 keV virtual single-energy images were obtained respectively. The signal-to-noise ratio (SNR) of normal esophageal tissue and esophageal cancer lesions, noise and contrast noise ratio (CNR tumor) of normal esophageal tissue and esophageal cancer lesions were compared among 100 kV images, Mono_E images and Mono+ images. At the same time, two imaging physicians read the films and scored the images of each group by using a 5-point scoring method. Results: Mono+ 55 keV images, SNR, SNRtumor, noise and CNRtumor were statistically different from those of 100 kV images and Mono_E images (P < 0.05). And Mono+ 55 keV images also had the highest subjective score, with statistical significance (P 55 keV images had the best quality. Conclusion: The new generation of virtual monoenergetic reconstructions post-processing (Mono+) could reduce image noise and improve the contrast between esophageal cancer lesions and normal esophageal tissues, which was of great significance to improve the imaging quality of esophageal cancer patients and improve the early detection rate of esophageal cancer.
文摘Purpose: To explore the significance of dual-source computed tomography (DECT) virtual monoenergetic reconstructions technology in improving image quality for portal vein system of pancreatic cancer patients. Materials and methods: 47 patients with clinically suspected pancreatic cancer (all confirmed by pathology) were collected. Routine plain scan was performed with Siemens Force dual-source dual-energy CT followed by 3 scans respectively carried out in arterial phase, portal phase and delayed phase. Traditional virtual monoenergetic reconstructions (Mono_E) and new generation of virtual monoenergetic reconstructions (Mono+) were respectively performed on portal vein images to obtain virtual single energy images including Mono_ E70 keV, Mono_E 55 keV and Mono+ 70 keV and Mono+ 55 keV. The signal-to-noise ratio (SNR) and noise of portal vein, normal pancreatic tissues and pancreatic lesions of 100 kV, Mono_E and Mono+ images were compared. In addition, the contrast noise ratio of portal vein and lesions as well as pancreatic tissues and lesions (CNR PV, CNRtumor) were also compared. At the same time, two imaging physicians with rich clinical experiences read the films and scored the images of each group by using the 5-point scoring method. Results: Mono+ 55 keV images including SNRpv, SNRpanc, SNRtumor, Noise, CNRpv, CNRtumor were statistically different from 100 KV images and Mono_E images (P < 0.05). As for the subjective score, Mono+ 55 keV image score also had the highest score, which had statistical significance (P < 0.05). The results showed that Mono+ 55 keV images had the best quality. Conclusion: The new generation of virtual Mono+ post-treatment can reduce image noise. Low energy Mono+ images can improve the contrast between pancreatic cancer lesions and portal of pancreatic cancer patients.
基金supported by the National Basic Research Program of China (973 Program) (Grant No. 2011CB707705)National Natural Science Foundation of China (Grant No. 81371715+1 种基金 81201215)the Capital Characteristic Clinical Application Research (Grant No. Z121107001012115)
文摘Objective: To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Methods: Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. Results: In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. Conclusions: We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.
基金supported by National Key Technology R&D Program of the Ministry of Science and Technology(No.2012BA107B05)
文摘The measurement of electron density is important for medical diagnosis and charged particle radiotherapy treatment planning.Traditionally,electron density is obtained by CT imaging using the relationship between CT-number and electron densities established beforehand.However,the measurement is not accurate due to the beam hardening effect.In this paper,we propose a simple and practical electron density acquisition method based on dual-energy CT technique.For each sample,the CT imaging is conducted using two selected X-ray energy from synchrotron radiation.A post-processing dual-energy reconstruction method is used.Linear attenuation coefficients of the scanned samples are obtained by FBP reconstruction.The effective atomic number and electron density are got by solving the dual-energy simultaneous equations.Different phantoms and breast tissues were scanned in this experimental study under 10 keV and 30 keV monochromatic X-rays.The distribution of effective atomic numbers and electron densities of the scanned phantoms were obtained by Dual-energy CT image reconstruction,which agrees well with the theoretical values.Compared with conventional methods,the measurement accuracy is greatly improved, and the measurement error is reduced to about 1%.This experimental study demonstrates that DECT imaging based on synchrotron radiation source is applicable to medical diagnosis for quantitative measurement with high accuracy.
文摘<strong>Objectives:</strong> To evaluate the diagnostic performance of the quantitative iodine parameters, including Iodine Concentration (IC), Normalized Iodine Concentration (NIC), and λ<sub>HU</sub>, in distinguishing malignant and benign thyroid nodules. <strong>Methods:</strong> Relevant studies were searched from Web of Science, PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure database and other complementary sources from inception to May 20, 2020. Study selection, data extraction, quality assessment, and data analyses were performed following the Cochrane standards and the PRISMA-DTA guideline. <strong>Results: </strong>Eight studies were included (595 patients with 737 thyroid nodules). The pooled sensitivity, specificity and summary diagnostic odds ratio of IC were 79% (95% CI: 69% - 86%), 76% (95% CI: 65% - 84%) and 11 (95% CI: 5 - 27) respectively;those of NIC were 78% (95% CI: 70% - 85%), 80% (95% CI: 74% - 85%) and 15 (95% CI: 9 - 24) respectively;those of λ<sub>HU</sub> were 80% (95% CI: 71% - 87%), 77% (95% CI: 70% - 83%) and 14 (95% CI: 8 - 24) respectively. <strong>Conclusion: </strong>DECT can be a potential evaluation tool for thyroid nodules. The NIC may be the most sensitive iodine parameter and could be comparable between different DECT machines in thyroid nodule assessment.
文摘Objective: To explore the significance of dual-energy CT non-linear fusion technique in improving the quality of CTA image of renal cancer. Methods: The CTA images of 100 patients who had been confirmed by pathology as renal cancer were collected and were randomly divided into experimental group and control group with 50 cases respectively. The two groups of patients were treated with iodine concentration of 300 mg/ml and 350 mg/ml non-ionic contrast agent, with a dosage of 1.5 ml/kg and an injection rate of 4 ml/s. The contrast agent intelligently tracking method was adopted bolus. The control group used the conventional CTA scanning, with a reference tube voltage/tube current of 100 kv/ref150 mas. The experimental group adopted the double energy scanning, with ball tube A and ball tube B. The reference tube voltage/tube current was 100 kv/ref250 mas and sn150 kv/ref125 mas respectively. The images of the experimental group were non-linear fused to obtain the Mono+ 55 kev single-energy images. The CT value, SNR contrast ratio of the abdominal aorta, renal artery and tumor tissue of the experimental group images and the 100 KV images and the Mono+ 55 kev images of the control group were compared. The objective evaluation and subjective evaluation of the image quality of the three groups of images was performed. Results: The results showed that the 100 kV images of the experimental group were statistically different from those of the control group (P05) in CT value, SNR and CNR (P 0.05). And there was no statistically significant difference between the non-linear fusion single-energy Mono+ 55 kev images and the control group images in CT value, SNR and CNR (P > 0.05). The subjective evaluation of image quality showed that there was no significant difference between Mono+ 55 kev images and control group images, and the quality of Mono+ 55 kev images was higher than that of experimental group 100 kV images. Conclusion: The dual-energy CT non-linear fusion technique can improve the quality of CTA image in patients with renal cancer, and it is possible to obtain high quality CTA images with low iodine concentration contrast agent.
文摘Objective: On the premise that the image quality meets the requirements of clinical diagnosis, we explored the methods to reduce the radiation dose of coronary artery imaging with Dual-Source CT (DSCT). Methods: We randomly selected 200 patients with coronary heat disease (BIM 0.05). The average image noise in group A is (41.76 ± 7.98) HU, in group B the average image noise is (43.97 ± 3.88) HU, the dif- ference between the two groups was not statistically significant (P>0.05). The average CTDIvol of group A and B were (20.63 ± 2.24) mGy, (38.11 ± 10.69) mGy, respectively, then P <0.01. The average DLP of group A and B are (235.75 ± 28.64) mGycm and (492.59 ± 125.49) mGycm respectively, then P <0.01, the dif- ference of radiation dose had statistical significance (P<0.05). Conclusions: For coronary artery imaging with DSCT the heart electric pulse (AUTO) regulation technology can meet the diagnostic requirements and effectively reduce the radiation dose.
文摘Objective: Computed tomography (CT)-based attenuation correction (CTAC) offers the clear benefit of reliable reconstruction of single-photon emission computed tomography (SPECT) images through its ability to achieve object-specific attenuation maps, but artifacts from dense materials often deteriorate CTAC performance. Therefore, we investigate the feasibility of CTAC in the presence of dense materials using dual-energy virtual monochromatic CT data. Methods: A sodium pertechnetate-filled cylindrical uniform phantom, with a pair of undiluted iodine syringes attached, is scanned with a dual-source CT scanner to obtain both single-energy (120 kVp) polychromatic and dual-energy (80 kVp/140 kVp with tin filtering) virtual monochromatic CT images. The single-energy and the dual-energy CT images are then converted to attenuation maps at 141 keV. SPECT images are reconstructed from 99mTc emission data of the phantom using each single-energy and dual-energy attenuation map and incorporating CTAC procedure. A region-of-in- terest analysis is performed to quantitatively compare the attenuation maps between the single-energy and the dual-energy techniques, each at an iodine-free position and a position adjacent to the iodine solutions. Results: At the iodine-free position, the phantom provides a uniform distribution of attenuation maps in both the single-energy and the dual-energy techniques. In the presence of adjacent iodine solutions, however, severe artifacts appeare in the single-energy CT images. These artifacts make attenuation values fluctuate, resulting in erroneous pixel values in the CTAC SPECT images. In contrast, dual-energy CT strongly suppresses the artifacts and hence improves the uniformity of the attenuation maps and the resultant SPECT images. Conclusions: Dual-energy CT with virtual monochromatic reconstruction has the potential to substantially reduce artifacts arising from dense materials. It has the potential to improve the accuracy of attenuation maps and the resultant CTAC SPECT images.
文摘Objective: To compare and analyze the image quality and radiation dose of three scanning modes of dual-source CT coronary artery retrospectively, and to discuss the application value of TurboFlash coarse pitch scanning mode. Methods: The imaging data of 100 patients who underwent CT coronary angiography (CCTA) using Siemens force CT retrospective gated triggering spiral scan (RES-SPIRAL), adaptive prospective gated triggering sequence scan (SEQ) and prospective coarse pitch scan (TurboFlash) retrospectively was collected. The image quality was evaluated by objective and subjective methods. The effective radiation dose of patients was compared and analyzed, and the indications of the three scanning modes were analyzed. The application value of dual-source CT TurboFlash coarse pitch scanning in coronary artery imaging was evaluated. Results: The results showed that the left main coronary artery, the right coronary artery and their tertiary branches could be clearly displayed in the three groups of images: the left anterior descending branch, the left circumflex branch, and their three-level branches. There was no statistical difference in subjective image quality among the three groups of pictures (P > 0.05). There was no statistical difference in objective evaluation indexes, such as CT value, SNR, CNR and Noise among the three groups (P > 0.05). The patient radiation dose results showed that the effective radiation dose ED of RES-SPIRA scan was (9.22 ± 1.33) mSv. The dose of SEQ was (2.88 ± 2.47) mSv, and the dose of TurboFlash was (0.51 ± 0.16) mSv. There was significant difference in comparison of the three groups (P 0.05). RES-spiral scanning had the highest radiation dose and TurboFlash coarse pitch scanning (TurboFlash) had the lowest radiation dose. Conclusion: TurboFlash coarse pitch scanning is low in dosage, fast in speed and wide in adaptability. It is especially suitable for the elderly, children, coma and other patients who cannot cooperate with breath-holding examination, as well as for the screening and examination of coronary artery diseases in asymptomatic population. Undoubtedly, it is a worthy method of heart coronary artery examination.
基金supported by the Natural Science Foundation of Hubei Province,China(No.2012FKB02443)
文摘The influence of low tube voltage in dual source CT(DSCT) coronary artery imaging on image quality and radiation dose and its application value in clinical practice were investigated. Totally, 300 cases of chest pain with low body mass index(BMI 〈18.5 kg/m2) subjected to DSCT coronary artery imaging were prospectively enrolled. The heart rate in all patients were greater than 65/min. The retrospective ECG gated scanning mode and simple random sampling method were used to assign the patients into groups A, B and C(n=100 each). The patients in groups A, B and C experienced 120-, 100-, and 80-kV tube voltage imaging respectively, and the image quality was evaluated. The CT volume dose index(CTDIvol) and dose length product(DLP) were recorded, and the effective dose(ED) was calculated in each group. The image quality scores and radiation doses in groups were compared, and the influence of tube voltage on image quality and radiation dose was analyzed. The results showed that the excellent rate of image quality in groups A, B and C was 95.69%, 94.72% and 96.33% respectively with the difference being not statistically significant among the three groups(P〉0.05). The CTDIvol values in groups A, B and C were 51.35±12.21, 21.28±7.13 and 6.34±3.34 mGy, respectively, with the difference being statistically significant(P〈0.05). The ED values in groups A, B and C were 9.27±1.63, 4.56±2.29 and 2.29±1.69 mSv, respectively, with the difference being statistically significant(P〈0.05). It was suggested that for the patients with low BMI, the application of DSCT coronary artery imaging with low tube voltage can obtain satisfactory image quality, and simultaneously, significantly reduce the radiation dose.
文摘Dual-energy X-ray absorptiometry provides two modes of head computed tomography (CT) angiography scanning: neuro-digital subtraction angiography and dual-energy CT angiography (DE-CTA). Previous studies have compared image quality, radiation exposure, and bone removal between neuro-digital subtraction angiography and DE-CTA. However, the number of cases was relatively small. The present study examined 300 suspected cases of cerebrovascular disease and observed the methods and duration of post-processing, examination time, and data volume. Results demonstrated similar image quality between the two methods, but lower radiation doses and shorter examination time in DE-CTA. DE-CTA allowed for faster and more stable scanning performance and post-processing methods, facilitating accurate and direct diagnosis of cerebrovascular disease.
文摘To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comparators, two microcomputers, and two frequency-voltage converters. X-ray photons are detected using the detector system, and the event pulses are input to three comparators simultaneously to determine threshold energies. At a tube voltage of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy ranges are 16 - 35 and 52 - 100 keV. X-ray photons in the two ranges are counted using microcomputers, and the logical pulses from the two microcomputers are input to two frequency-voltage converters. In dual-energy computed tomography (CT), the tube voltage and current were 100 kV and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16 - 35 and 52 - 100 keV, respectively. The maximum count rate of dual-energy CT was 105 kilocounts per second with energies ranging from 16 to 100 keV, and the exposure time for tomography was 19.6 min.
基金Item Sponsored by Ministry of Science and Technology of China(G1998061513)
文摘The hydrogen trapping phenomena in two bainite/martensite dual-phase high strength steels(U20Si and U20DSi)were investigated by electrochemical permeation technique.The hydrogen diffusivity was calculated from data of permeation delay time,and the diffusion coefficient in U20 Si is far less than that in U20 DSi.Moreover,the hydrogen diffusivity decreases as the volume percent of retained austenite increases.The experiment results show that there are different hydrogen trappings and different volume percents of retained austenite in U20 Si and U20 DSi.The retained austenite is precipitated as films.The trap binding energy for the retained austenite and hydrogen is calculated to be 40.4kJ·mol-1.
文摘The present study aimed to investigate the possibility of using dual-energy computed tomography (CT) before therapy to discriminate between normal breast tissue and tumor tissue in patients with breast cancer, without the need to use a contrast medium. The following patient data were extracted by interview and from the hospital’s radiology information system: height, weight, age, menstrual cycle, CT images of normal tissue and tumors with or without contrast medium, and the histopathological diagnosis of the aspiration biopsy. The median age of the 43 participants was 56 years (range, 30 - 80 years). The CT values were evaluated using a clinical analytical program based on the three-material decomposition technique. Breast cancer was classified into ductal carcinoma in situ, invasive ductal carcinoma, invasive lobular carcinoma, fibromatosis-like metaplastic carcinoma, and apocrine carcinoma. In all conditions, regardless of contrast medium, the CT values of tumor tissues were higher than those of normal breast tissue, indicating the effectiveness of dual-energy CT (DE-CT) in the diagnosis of breast cancer. By contrast, DE-CT showed limited potential for distinguishing ductal carcinoma in situ from invasive ductal carcinoma. There have only been a few reports regarding CT examination of breast cancer, and it is expected this study encourage the development of DE-CT imaging to improve tumor detection in patients with breast cancer.
文摘Foreign body insertion in the urethra and bladder is not uncommon and has been reported in many studies to date. However, since foreign bodies are often accidentally introduced into the urethra and bladder during masturbation, they take a variety of shapes and sizes. Furthermore, patient self-reports are typically unreliable as many patients feel ashamed;thus, appropriate preoperative diagnosis is critical. Diagnosis of foreign body insertion in the urethra and bladder is performed using imaging modalities such as abdominal X-ray and computed tomography (CT). However, single-energy CT (SECT) is not sufficient in detecting foreign bodies in some cases. In the present study, we report a successful preoperative identification of urethral foreign body in a patient using dual-energy CT (DECT).