It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems kn...It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.展开更多
In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. A...In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.展开更多
文摘It is well established that Nash equilibrium exists within the framework of mixed strategies in strategic-form non-cooperative games. However, finding the Nash equilibrium generally belongs to the class of problems known as PPAD (Polynomial Parity Argument on Directed graphs), for which no polynomial-time solution methods are known, even for two-player games. This paper demonstrates that in fixed-sum two-player games (including zero-sum games), the Nash equilibrium forms a convex set, and has a unique expected payoff. Furthermore, these equilibria are Pareto optimal. Additionally, it is shown that the Nash equilibrium of fixed-sum two-player games can theoretically be found in polynomial time using the principal-dual interior point method, a solution method of linear programming.
基金supported by the Beijing Natural Science Foundation (4142049)863 project No. 2014AA01A701the Fundamental Research Funds for Central Universities of China No. 2015XS07
文摘In heterogeneous network with hybrid energy supplies including green energy and on-grid energy, it is imperative to increase the utilization of green energy as well as to improve the utilities of users and networks. As the difference of hybrid energy source in stability and economy, thus, this paper focuses on the network with hybrid energy source, and design the utility of each user in the hybrid energy source system from the perspective of stability, economy and environment pollution. A dual power allocation algorithm based on Stackelberg game to maximize the utilities of users and networks is proposed. In addition, an iteration method is proposed which enables all players to reach the Stackelberg equilibrium(SE). Simulation results validate that players can reach the SE and the utilities of users and networks can be maximization, and the green energy can be efficiently used.