Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural fea...Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural feature mining of single-layer networks or each layer, ignoring the structural association of multi-layer networks. In this paper, we examined the multi-layer structural property of the bus-subway network of Shanghai at both global and nodal scales. A dual-layer model of the city’s bus and subway system was built. Single-layer complex network indicators were also extended. The paper also explored the spatial coupling properties of the city’s bus and subway system and identified its primary traffic nodes. It was found that 1) the dual-layer network increased the network’s connectivity to a certain extent and broke through the spatial limitation in terms of physical structure, making the connection between any two locations more direct. 2) The dual-layer network changed the topological characteristics of the transit network, increasing the centrality value and bit order in degree centrality, betweenness centrality, and closeness centrality to different degrees, and making each centrality tend to converge to the city center in spatial distribution. Enhancing the management of critical network nodes would help the integrated public transportation system operate more effectively and provide higher-quality services.展开更多
The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challengi...The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.展开更多
现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and...现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and feature fusion,DRPFF),该模型使用预训练的基于Transformer的双向编码表示模型(bidirectional encoder representation from transformers,BERT)对文本进行编码,并设计两阶段的双关系预测结构来减少抽取过程中错误三元组的生成。在阶段间通过门控线性单元(gated linear unit,GLU)和条件层规范化(conditional layer normalization,CLN)组合的结构来更好地融合实体之间的特征。在NYT和WebNLG这2个公开数据集上的试验结果表明,该模型相较于基线方法取得了更好的效果。展开更多
文摘Buses and subways are essential to urban public transportation systems and an important engine for activating high-quality urban development. Traditional multi-modal transportation networks focus on the structural feature mining of single-layer networks or each layer, ignoring the structural association of multi-layer networks. In this paper, we examined the multi-layer structural property of the bus-subway network of Shanghai at both global and nodal scales. A dual-layer model of the city’s bus and subway system was built. Single-layer complex network indicators were also extended. The paper also explored the spatial coupling properties of the city’s bus and subway system and identified its primary traffic nodes. It was found that 1) the dual-layer network increased the network’s connectivity to a certain extent and broke through the spatial limitation in terms of physical structure, making the connection between any two locations more direct. 2) The dual-layer network changed the topological characteristics of the transit network, increasing the centrality value and bit order in degree centrality, betweenness centrality, and closeness centrality to different degrees, and making each centrality tend to converge to the city center in spatial distribution. Enhancing the management of critical network nodes would help the integrated public transportation system operate more effectively and provide higher-quality services.
基金supported by the National Natural Science Foundation of China under Grant No.61371075the 863 project SS2015AA011306
文摘The tremendous performance gain of heterogeneous networks(Het Nets) is at the cost of complicated resource allocation. Considering information security, the resource allocation for Het Nets becomes much more challenging and this is the focus of this paper. In this paper, the eavesdropper is hidden from the macro base stations. To relax the unpractical assumption on the channel state information on eavesdropper, a localization based algorithm is first given. Then a joint resource allocation algorithm is proposed in our work, which simultaneously considers physical layer security, cross-tier interference and joint optimization of power and subcarriers under fairness requirements. It is revealed in our work that the considered optimization problem can be efficiently solved relying on convex optimization theory and the Lagrangian dual decomposition method is exploited to solve the considered problem effectively. Moreover, in each iteration the closed-form optimal resource allocation solutions can be obtained based on the Karush-Kuhn-Tucker(KKT) conditions. Finally, the simulation results are given to show the performance advantages of the proposed algorithm.
文摘现有分阶段解码的实体关系抽取模型仍存在着阶段间特征融合不充分的问题,会增大曝光偏差对抽取性能的影响。为此,提出一种双关系预测和特征融合的实体关系抽取模型(entity relation extraction model with dual relation prediction and feature fusion,DRPFF),该模型使用预训练的基于Transformer的双向编码表示模型(bidirectional encoder representation from transformers,BERT)对文本进行编码,并设计两阶段的双关系预测结构来减少抽取过程中错误三元组的生成。在阶段间通过门控线性单元(gated linear unit,GLU)和条件层规范化(conditional layer normalization,CLN)组合的结构来更好地融合实体之间的特征。在NYT和WebNLG这2个公开数据集上的试验结果表明,该模型相较于基线方法取得了更好的效果。