Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on E...Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.展开更多
Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the...Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.展开更多
Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified M...Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
Coal mine conveyor belt and other low-speed large torque system,the torque density and torque stability of the motor requirements are higher,permanent magnet/magnet reluctance hybrid rotor double stator synchronous mo...Coal mine conveyor belt and other low-speed large torque system,the torque density and torque stability of the motor requirements are higher,permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(PM/MRHRDSSM)is just adapted to this requirement,however,the traditional close winding single inverter vector control system control PM/MRHRDSSM provides large torque ripple,high speed fluctuation and large total harmonic distortion(THD)of the current,difficult to be used in actual production and life,this paper proposes a large torque open winding-permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(OW-PM/MRHRDSSM)based on SVPWM dual inverter control strategy,and analysis of open winding double inverter structure,and its voltage vector mathematical model,using the existing two-level inverter as a basis,the bilateral inverter separately discussed its role and control method,as well as the decomposition method of synthetic voltage vector and the inverter device in the small sector on-time,the end of this paper through simulation to compare the traditional close winding single inverter vector control system control PM/MRHRDSSM and the large torque OW-PM/MRHRDSSM based on SVPWM dual inverter control strategy to prove the effectiveness of the proposed method in reducing torque ripple,speed fluctuation and THD of current during motor operation.展开更多
This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transforma...This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transformation matrix and an extended rotating coordinate transformation matrix are investigated considering the influence of the fifth harmonic space on fault-tolerant control. These mathematical models are further analyzed in the fundamental space and the fifth harmonic space after the fault and to eliminate the coupling between the d-q axis voltage equation in the fundamental wave space and the d-q axis voltage equation in the fifth harmonic space, a secondary rotation coordinate transformation matrix is proposed. To achieve the purpose of reducing torque ripple, the fault-tolerant control method proposed in this paper not only takes the minimum copper loss as the constraint condition, but also injects the fifth harmonic current. The experimental result of current and torque is used to verify the accuracy of fault-tolerant control.展开更多
In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inver...In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.展开更多
As a vital vehicle part,the powertrain system is undergoing a fast transition towards electrification.The new integrated electric drive system has been widely used,especially for passenger cars.In this work,a novel el...As a vital vehicle part,the powertrain system is undergoing a fast transition towards electrification.The new integrated electric drive system has been widely used,especially for passenger cars.In this work,a novel electric dual motor transmission is proposed for heavy commercial vehicles.The transmission scheme is firstly introduced,which can achieve 9 different operating modes including 5 single motor modes and 4 dual motor modes.Then,the mode shift map with minimum energy consumption is designed based on the motor efficiency map and the proposed energy management strategy.The driving power is appropriately distributed between the two motors in dual motor modes under the condition of minimum power consumption.In addition,a coordinated control strategy is developed for mode shift control without power interruption.The results show that the electric dual motor transmission has advantages in power consumption and power shift ability compared with the conventional single motor automated manual transmission.展开更多
In this paper,the fault-tolerant capability of the existing stator-flux-oriented decoupling control(SFOC)for the DTP-PM motor is investigated,and a simple fault-tolerant SFOC is further designed to enhance fault toler...In this paper,the fault-tolerant capability of the existing stator-flux-oriented decoupling control(SFOC)for the DTP-PM motor is investigated,and a simple fault-tolerant SFOC is further designed to enhance fault tolerance.Firstly,the mathematical model of the DTP-PM motor in the stator-flux-oriented rotating coordinate system is analyzed.An SFOC is proposed to guarantee healthy operation performance,considering torque,flux linkage,and harmonic currents.Secondly,the coupling relationship under open-phase conditions is assessed.The assessed result shows that the coupling relationship between the harmonic and fundamental components results in conflicts and poor post-fault operation.Thirdly,the proposed SFOC includes an automatic deactivation module to detect conflicts with a variable threshold.The conflicted harmonic current controllers can be excluded automatically.Hence,fault-tolerant control can be remedied without diagnosing the specific fault scenario,and excellent faulttolerant capability can be achieved.Finally,experiments on a DTP-PM motor are carried out to verify the feasibility and effectiveness of the proposed strategy.展开更多
Single voltage vectors applied in the conventional model predictive torque control(MPTC)for multiphase motors do not only suffer from serious torque and stator flux ripples but also cause the large harmonic current.To...Single voltage vectors applied in the conventional model predictive torque control(MPTC)for multiphase motors do not only suffer from serious torque and stator flux ripples but also cause the large harmonic current.To address the aforementioned challenges,an MPTC using a modified dual virtual vector modulation method is proposed to improve the operational performance of a dual three-phase permanent magnet synchronous motor.Virtual voltage vectors are synthesized as the candidate control set to restrain the harmonic current.A transformation method is introduced to consider both the stator flux and torque in the duty cycle modulation.The torque and stator flux ripples are simultaneously reduced by addressing the limitations of nonuniform units.Furthermore,the null voltage vector is then inserted to expand the modulation range and improve the steady-state performance.Moreover,the sawtooth carrier is adopted to address the challenge of the asymmetric switch sequence caused by the modified modulation.Finally,the experimental results are presented to verify the effectiveness and superiority of the proposed MPTC method.展开更多
基金Supported by Doctoral Fund of Ministry of Education of China(20101101110012)the National Natural Science Foundationof China(51175040)
文摘Based on analyzing the structure and working principle on electric vehicles (EVs) with dual motors coupled by planetarY gears, the control strategy of mode switching was proposed. The power interruption problem on EVs with automatic mechanical transmission (AMT) shifting was resolved. Based on the speed-torque characteristics of the planetary gears and the principle of the auxiliary motor' s zero speed braking, control features of mode switching were introduced. The mode shifting between the main motor mode and dual motors coupled driving were studied. Matlab/Simulink was adopted as a platform to develop the simulation model of EVs with dual motors drive system and 3 gears AMT. Simulation results demonstrated that the power interruption of dual motors drive system was solved during mode switching. The power requirements of EVs were satisfied, too.
基金supported in part by the Liaoning Provincial Department of Education Key Research Project under JYT2020160by the Liaoning Provincial Department of Education General Project under LJKZ0224。
文摘Dual three-phase Permanent Magnet Synchronous Motor(DTP-PMSM)is a nonlinear,strongly coupled,high-order multivariable system.In today’s application scenarios,it is difficult for traditional PI controllers to meet the requirements of fast response,high accuracy and good robustness.In order to improve the performance of DTP-PMSM speed regulation system,a control strategy of PI controller based on genetic algorithm is proposed.Firstly,the basic mathematical model of DTP-PMSM is established,and the PI parameters of DTP-PMSM speed regulation system are optimized by genetic algorithm,and the modeling and simulation experiments of DTP-PMSM control system are carried out by MATLAB/SIMULINK.The simulation results show that,compared with the traditional PI control,the proposed algorithm significantly improves the performance of the control system,and the speed output overshoot of the GA-PI speed control system is smaller.The anti-interference ability is stronger,and the torque and double three-phase current output fluctuations are smaller.
基金supported by the National Natural Science Foundation of China under Grant 5227705。
文摘Finite-control-set model predictive control(FCSMPC)has advantages of multi-objective optimization and easy implementation.To reduce the computational burden and switching frequency,this article proposed a simplified MPC for dual three-phase permanent magnet synchronous motor(DTPPMSM).The novelty of this method is the decomposition of prediction function and the switching optimization algorithm.Based on the decomposition of prediction function,the current increment vector is obtained,which is employed to select the optimal voltage vector and calculate the duty cycle.Then,the computation burden can be reduced and the current tracking performance can be maintained.Additionally,the switching optimization algorithm was proposed to optimize the voltage vector action sequence,which results in lower switching frequency.Hence,this control strategy can not only reduce the computation burden and switching frequency,but also maintain the steady-state and dynamic performance.The simulation and experimental results are presented to verify the feasibility of the proposed strategy.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金supported in part by the National Natural Science Foundation of China under Grant U22A20215 and 51877139Applied Basic Research Program of Liaoning Province under Grant 2023JH2/101300219。
文摘Coal mine conveyor belt and other low-speed large torque system,the torque density and torque stability of the motor requirements are higher,permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(PM/MRHRDSSM)is just adapted to this requirement,however,the traditional close winding single inverter vector control system control PM/MRHRDSSM provides large torque ripple,high speed fluctuation and large total harmonic distortion(THD)of the current,difficult to be used in actual production and life,this paper proposes a large torque open winding-permanent magnet/magnet reluctance hybrid rotor double stator synchronous motor(OW-PM/MRHRDSSM)based on SVPWM dual inverter control strategy,and analysis of open winding double inverter structure,and its voltage vector mathematical model,using the existing two-level inverter as a basis,the bilateral inverter separately discussed its role and control method,as well as the decomposition method of synthetic voltage vector and the inverter device in the small sector on-time,the end of this paper through simulation to compare the traditional close winding single inverter vector control system control PM/MRHRDSSM and the large torque OW-PM/MRHRDSSM based on SVPWM dual inverter control strategy to prove the effectiveness of the proposed method in reducing torque ripple,speed fluctuation and THD of current during motor operation.
基金supported by the National Natural Science Foundation of China under Grant 61603263。
文摘This paper proposes a novel control approach for fault-tolerant control of dual three-phase permanent magnet synchronous motor(PMSM) under one-phase open-circuit fault.A modified six-phase static coordinate transformation matrix and an extended rotating coordinate transformation matrix are investigated considering the influence of the fifth harmonic space on fault-tolerant control. These mathematical models are further analyzed in the fundamental space and the fifth harmonic space after the fault and to eliminate the coupling between the d-q axis voltage equation in the fundamental wave space and the d-q axis voltage equation in the fifth harmonic space, a secondary rotation coordinate transformation matrix is proposed. To achieve the purpose of reducing torque ripple, the fault-tolerant control method proposed in this paper not only takes the minimum copper loss as the constraint condition, but also injects the fifth harmonic current. The experimental result of current and torque is used to verify the accuracy of fault-tolerant control.
文摘In this paper, post-fault-tolerant control strategies for quad-inverter multiphase-multilevel induction motor drives are investigated. More specifically, four standard two-level three-phase VSIs (voltage source inverters) supplying the open-end windings of a dual three-phase induction motor is considered, quadrupling the power capability of a single VSI with given voltage and current ratings. In healthy conditions, the control algorithm is able to generate multi-level voltage waveforms, equivalent to the ones of a three-level inverter and to share the total motor power among the four dc sources in each switching period. This sharing capability is investigated under post-fault operating conditions, when one VSI must be completely insulated due to a severe failure on it. In this case, the conversion power unit can operate with a reduced power rating by a proper modulation of the remaining three VSIs. The whole ac motor drive has been numerically implemented, and the effectiveness of the proposed control strategies under healthy and post-fault operating conditions have been proved.
基金This work is financially supported by The 2025 Science and Technology Innovation Program of Ningbo“R&D of Key Technologies for Electric Vehicle Range Extenders”(Grant No.2019B10111),National Natural Science Foundation of China(NSFC,Grant No.52072018)Key Science and Technology Innovation Project of Shandong Province(Grant No.2019JZZY010913)Key Science and Technology Project of Guangxi Province(Grant No.AA19254013).
文摘As a vital vehicle part,the powertrain system is undergoing a fast transition towards electrification.The new integrated electric drive system has been widely used,especially for passenger cars.In this work,a novel electric dual motor transmission is proposed for heavy commercial vehicles.The transmission scheme is firstly introduced,which can achieve 9 different operating modes including 5 single motor modes and 4 dual motor modes.Then,the mode shift map with minimum energy consumption is designed based on the motor efficiency map and the proposed energy management strategy.The driving power is appropriately distributed between the two motors in dual motor modes under the condition of minimum power consumption.In addition,a coordinated control strategy is developed for mode shift control without power interruption.The results show that the electric dual motor transmission has advantages in power consumption and power shift ability compared with the conventional single motor automated manual transmission.
基金supported by the National Natural Science Foundation of China(Grant Nos.52025073 and 52107047)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘In this paper,the fault-tolerant capability of the existing stator-flux-oriented decoupling control(SFOC)for the DTP-PM motor is investigated,and a simple fault-tolerant SFOC is further designed to enhance fault tolerance.Firstly,the mathematical model of the DTP-PM motor in the stator-flux-oriented rotating coordinate system is analyzed.An SFOC is proposed to guarantee healthy operation performance,considering torque,flux linkage,and harmonic currents.Secondly,the coupling relationship under open-phase conditions is assessed.The assessed result shows that the coupling relationship between the harmonic and fundamental components results in conflicts and poor post-fault operation.Thirdly,the proposed SFOC includes an automatic deactivation module to detect conflicts with a variable threshold.The conflicted harmonic current controllers can be excluded automatically.Hence,fault-tolerant control can be remedied without diagnosing the specific fault scenario,and excellent faulttolerant capability can be achieved.Finally,experiments on a DTP-PM motor are carried out to verify the feasibility and effectiveness of the proposed strategy.
基金Supported by the National Natural Science Foundation of China under Grant 51977099the Natural Science Foundation of Jiangsu Province under Grant BK20191225the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Single voltage vectors applied in the conventional model predictive torque control(MPTC)for multiphase motors do not only suffer from serious torque and stator flux ripples but also cause the large harmonic current.To address the aforementioned challenges,an MPTC using a modified dual virtual vector modulation method is proposed to improve the operational performance of a dual three-phase permanent magnet synchronous motor.Virtual voltage vectors are synthesized as the candidate control set to restrain the harmonic current.A transformation method is introduced to consider both the stator flux and torque in the duty cycle modulation.The torque and stator flux ripples are simultaneously reduced by addressing the limitations of nonuniform units.Furthermore,the null voltage vector is then inserted to expand the modulation range and improve the steady-state performance.Moreover,the sawtooth carrier is adopted to address the challenge of the asymmetric switch sequence caused by the modified modulation.Finally,the experimental results are presented to verify the effectiveness and superiority of the proposed MPTC method.