为了更全面地对睡眠脑电进行特征提取,提出一种基于多视图与注意力机制的睡眠脑电分期方法。首先针对原始睡眠脑电信号构造时域和时频域两类视图数据;然后设计融合注意力机制的混合神经网络对多视图数据进行表征学习;接着通过双向长短...为了更全面地对睡眠脑电进行特征提取,提出一种基于多视图与注意力机制的睡眠脑电分期方法。首先针对原始睡眠脑电信号构造时域和时频域两类视图数据;然后设计融合注意力机制的混合神经网络对多视图数据进行表征学习;接着通过双向长短时记忆(bi-directional long short-term memory,BiLSTM)网络进一步学习睡眠阶段之间的转换规则;最后使用Softmax函数进行睡眠分期,并利用类别加权损失函数解决睡眠数据类别不均衡的问题。实验使用Sleep-EDF数据库中前20名受试者的单通道脑电信号并采用20折交叉验证对模型进行性能评估,睡眠分期准确率达到83.7%,宏平均F_(1)值达到79.0%,Cohen′s Kappa系数达到0.78。与现有方法相比,算法性能提升明显,证明了所提方法的有效性。展开更多
针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,...针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。展开更多
文摘为了更全面地对睡眠脑电进行特征提取,提出一种基于多视图与注意力机制的睡眠脑电分期方法。首先针对原始睡眠脑电信号构造时域和时频域两类视图数据;然后设计融合注意力机制的混合神经网络对多视图数据进行表征学习;接着通过双向长短时记忆(bi-directional long short-term memory,BiLSTM)网络进一步学习睡眠阶段之间的转换规则;最后使用Softmax函数进行睡眠分期,并利用类别加权损失函数解决睡眠数据类别不均衡的问题。实验使用Sleep-EDF数据库中前20名受试者的单通道脑电信号并采用20折交叉验证对模型进行性能评估,睡眠分期准确率达到83.7%,宏平均F_(1)值达到79.0%,Cohen′s Kappa系数达到0.78。与现有方法相比,算法性能提升明显,证明了所提方法的有效性。
文摘针对现有非机动车头盔佩戴检测算法在车流密集场景中存在漏检,对佩戴其他帽子存在误检的问题,提出一种改进YOLOv5s(you only look once version5)的头盔佩戴检测算法YOLOv5s-BC。首先,采用软池化替换特征金字塔池化结构中的最大池化层,以放大更大强度的特征激活;其次,将坐标注意力机制和加权双向特征金字塔网络结合,搭建一种高效的双向跨尺度连接的加权特征聚合网络,以增强不同层级之间的信息传播;最后,用EIoU损失函数优化边框回归,精确目标定位。实验结果表明:在自制头盔数据集上,改进后的算法的平均精度(mAP)可达98.4%,比原算法提高了6.3%,推理速度达到58.69帧/s,整体性能优于其他主流算法,可满足交通道路环境下头盔佩戴检测的准确率和实时性要求。
基金安徽省高等学校科学研究项目(2022AH050834)安徽理工大学引进人才科研启动基金项目(2022yjrc61)+1 种基金安徽理工大学矿山智能技术与装备省部共建协同创新中心开放基金项目(CICJMITE202206)Open Fund of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines(SKLMRDPC22KF24)。