The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is...The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.展开更多
Fracture porosity is one of the key parameters for characterizing fractured reservoirs.However,fracture porosity calculation is difficult with conventional logging data due to severe anisotropy of the reservoirs.To de...Fracture porosity is one of the key parameters for characterizing fractured reservoirs.However,fracture porosity calculation is difficult with conventional logging data due to severe anisotropy of the reservoirs.To deal with the problem,the equivalent macroscopic anisotropic formation model based on dual laterolog(DLL)data is adopted to cyclically assign such parameters as bedrock resistivity(RB),fluid resistivity in fractures(RFL),fracture dip angle(FDA)and fracture thickness as well as fracture spacing,and to produce massive data for formation modeling.A large number of training data obtained through three dimensional finite element forward modeling and the functional relationship between DLL responses and fracture parameters that are trained and summarized by deep neural network,are combined to establish a new fast forward model for calculating DLL responses in fractured formations.A new fracture porosity inversion model for fractured reservoirs based on gradient optimization inversion algorithm combined with multi-initial inversion strategy is then proposed.While running the model,formation is divided into eight intervals according to bedrock resistivity and fracture dip angle from 0°to 90°is divided every 0.5°to improve the operation speed and efficiency.The results of numerical verification show that when bedrock resistivity is greater than 1000Ωm,the mean absolute error(MAE)of fracture porosity inversion is 0.001658%for horizontal fractures,0.00413%for intermediate fractures and 0.0027%for quasi-vertical fractures.When bedrock resistivity is between 100Ωm and 1000Ωm,MAE of fracture porosity inversion is 0.003%for horizontal fractures,0.0034%for intermediate fractures and 0.00348%for quasi-vertical fractures.Fracture parameters determined by the fracture porosity inversion model with actual data are in good agreement with the results of micro resistivity imaging logging.展开更多
In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When...In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.展开更多
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-f...The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.展开更多
Resource-saving(PrNdCe)_2Fe_(14)B sintered magnets with nominal composition(PrNd)_(15-x)Ce_xFe_(77)B_8(x=0–10)were prepared using a dual alloy method by mixing(PrNd)_5Ce_(10)Fe_(77)B_8 with(PrNd)_...Resource-saving(PrNdCe)_2Fe_(14)B sintered magnets with nominal composition(PrNd)_(15-x)Ce_xFe_(77)B_8(x=0–10)were prepared using a dual alloy method by mixing(PrNd)_5Ce_(10)Fe_(77)B_8 with(PrNd)_(15)Fe_(77)B_8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in(PrNd)_(11)Ce_4Fe_(77)B_8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where Pr Nd concentration is strongly dependent on the additive amount of(PrNd)_5Ce_(10)Fe_(77)B_8 powders. In addition, for Ce atomic percent of 8%,7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets.展开更多
Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body ...Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body force. This method can be used to solve the elasticity problems with body force without domain integral, which is inevitable by HBNM. To demonstrate the versatility and the fast convergence of this method, some numerical examples of 3-D elasticity problems with body forces are examined. The computational results show that the present method is effective and can be widely applied in solving practical engineering problems.展开更多
As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time de...As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.展开更多
Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppre...Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.展开更多
Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressur...Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model (DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient ), and the storage factor w. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density. The pressure propagation is slower in the direction of larger fracture density.展开更多
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effec...In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.展开更多
As an important model for explaining the seismic rupture mode,the asperity model plays an important role in studying the stress accumulation of faults and the location of earthquake initiation.Taking Qilian-Haiyuan fa...As an important model for explaining the seismic rupture mode,the asperity model plays an important role in studying the stress accumulation of faults and the location of earthquake initiation.Taking Qilian-Haiyuan fault as an example,this paper combines geodetic method and b-value method to propose a multi-source observation data fusion detection method that accurately determines the asperity boundary named dual threshold search method.The method is based on the criterion that the b-value asperity boundary should be most consistent with the slip deficit rate asperity boundary.Then the optimal threshold combination of slip deficit rate and b-value is obtained through threshold search,which can be used to determine the boundary of the asperity.Based on this method,the study finds that there are four potential asperities on the Qilian-Haiyuan fault:two asperities(A1 and A2)are on the Tuolaishan segment and the other two asperities(B and C)are on Lenglongling segment and Jinqianghe segment,respectively.Among them,the lengths of asperities A1 and A2 on Tuolaishan segment are 17.0 km and 64.8 km,respectively.And the lower boundaries are 5.5 km and 15.5 km,respectively;The length of asperity B on Lenglongling segment is 70.7 km,and the lower boundary is 10.2 km.The length of asperity C on Jinqianghe segment is 42.3 km,and the lower boundary is 8.3 km.展开更多
The present work deals with the reflection of plane seismic waves at the stress-free plane surface of double-porosity dualpermeability material. The incidence of two main waves(i.e., P1 and SV) is considered. As a r...The present work deals with the reflection of plane seismic waves at the stress-free plane surface of double-porosity dualpermeability material. The incidence of two main waves(i.e., P1 and SV) is considered. As a result of the incident waves,four reflected(three longitudinal and one shear) waves are found in the medium. The expressions of reflection coefficients for a given incident wave are obtained as a non-singular system of linear equations. The energy shares of reflected waves are obtained in the form of an energy matrix. A numerical example is considered to calculate the partition of incident energy for fully closed as well as perfectly open pores. Effect of incident direction on the partition of the incident energy is analyzed with the change in wave frequency, wave-induced fluid-flow, pore-fluid viscosity and double-porosity structure. It has been confirmed from the numerical interpretation that during the reflection process, conservation of incident energy is obtained at each angle of incidence.展开更多
Phenomena of reflection and refraction of plane harmonic waves at a plane interface between an elastic solid and doubleporosity dual-permeability material are investigated. The elastic solid behaves non-dissipatively,...Phenomena of reflection and refraction of plane harmonic waves at a plane interface between an elastic solid and doubleporosity dual-permeability material are investigated. The elastic solid behaves non-dissipatively, while double-porosity dual-permeability materials behave dissipatively to wave propagation due to the presence of viscosity in pore fluids. All the waves(i.e., incident and reflected) in an elastic medium are considered as homogeneous(i.e., having the same directions of propagation and attenuation), while all the refracted waves in double-porosity dual-permeability materials are inhomogeneous(i.e., having different directions of propagation and attenuation). The coefficients of reflection and refraction for a given incident wave are obtained as a non-singular system of linear equations. The energy shares of reflected and refracted waves are obtained in the form of an energy matrix. A numerical example is considered to calculate the partition of incident energy among various reflected and refracted waves. The effect of incident direction on the partition of the incident energy is analyzed with a change in wave frequency, wave-induced fluid-flow, pore-fluid viscosity and double-porosity structure.It has been confirmed from numerical interpretation that during the reflection/refraction process, conservation of incident energy is obtained at each angle of incidence.展开更多
A nonlinear dual-porosity model considering a quadratic gradient term is presented. Assuming the pressure difference between matrix and fractures as a primary unknown, to avoid solving the simultaneous system of equat...A nonlinear dual-porosity model considering a quadratic gradient term is presented. Assuming the pressure difference between matrix and fractures as a primary unknown, to avoid solving the simultaneous system of equations, decoupling of fluid pressures in the blocks from the fractures was furnished with a quasi-steady-state flow in the blocks. Analytical solutions were obtained in a radial flow domain using generalized Hankel transform. The real value cannot be gotten because the analytical solutions were infinite series. The real pressure value was obtained by numerical solving the eigenvalue problem. The change law of pressure was studied while the nonlinear parameters and dual-porosity parameters changed, and the plots of typical curves are given. All these result can be applied in well test analysis.展开更多
On the basis of investigated enhancement effect of La, Nd, Eu, and Y on Sm determination with monoxide molecular emission spectrometry, La was selected as enhancement agent and chemical interference inhibitor. In the ...On the basis of investigated enhancement effect of La, Nd, Eu, and Y on Sm determination with monoxide molecular emission spectrometry, La was selected as enhancement agent and chemical interference inhibitor. In the presence of La, dual wavelength mothod was introduced to eliminate the spectral interference on Sm by other elements. A new method was established to determine samarium in high yttrium rare earth samples with satisfactory results.展开更多
The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray d...The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction (XRD) reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets. Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd-Fe-B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve (FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.展开更多
Density and porosity are fundamental and important physical properties of rocks in various geological problems, and affect the other physical properties. Therefore, measurements of density and porosity of rock samples...Density and porosity are fundamental and important physical properties of rocks in various geological problems, and affect the other physical properties. Therefore, measurements of density and porosity of rock samples are important investigation items in both geo-science and geo-engineering areas. Several measurement techniques of the density and porosity are available and being applied currently. To ensure the data quality and to conduct its quality assessment, comparison of measurement results by different measurement techniques is necessary since the techniques are based on different principles and test procedures. In this study, we collected eight types of rock samples including a gabbro, a granite, four sandstones, a welded tuff and a mudstone as study materials, and also prepared several metal specimens for the experimental comparison. The porosities of the eight rocks covered a very wide range from 0.3% to 50% approximately. We employed three methods (caliper, buoyancy and helium-displacement pycnometer) to measure volumes of regularly-shaped specimens and to determine their bulk densities and porosities. As a result, the three techniques yielded almost same bulk densities and porosities for all the specimens. In addition, we also applied mercury intrusion porosimetry to measure density and porosity as well as to determine pore size distribution of the rock samples. Porosity values obtained by the porosimetry method were underestimated in the case of high-porosity (soft) rock samples and overestimated for the very low-porosity rock samples. Ability to determine pore size distribution, however, is a very important advantage of the porosimetry method.展开更多
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation del(2) u + u + epsilon u(3) = b. Results obtained in an example have a good agreement with those by FEM a...In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation del(2) u + u + epsilon u(3) = b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method (DRM) in solving nonlinear differential equations.展开更多
The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering th...The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.展开更多
dual-standard addition method was proposed and the principle of simultaneous determination for a interfering binary mixtures was discussed. The proposed procedure was applied to spectroscopic analyses for the simultan...dual-standard addition method was proposed and the principle of simultaneous determination for a interfering binary mixtures was discussed. The proposed procedure was applied to spectroscopic analyses for the simultaneous determination of uranium and thorium without prior separation. Various molar ratios of uranium/thorium, from 0.5∶1 to 10∶1, can be determined with satisfactory precision and accuracy. Uranium and thorium content in a phosphate ore and simulated sample were determined, the recoveries were 98.4%~102.5% for uranium and 96.8%~102.3% for thorium, the relative standard deviations (R.S.D) were 1.5%~2.3% for uranium and 2.1%~3.1% for thorium.展开更多
文摘The dual transmitter implements the equivalent anti-magnetic flux transient electromagnetic method, which can effectively reduce the scope of the transient electromagnetic detection blind area. However, this method is rarely reported in the detection of pipelines in urban geophysical exploration and the application of coal mines. Based on this, this paper realizes the equivalent anti-magnetic flux transient electromagnetic method based on the dual launcher. The suppression effect of this method on the blind area is analyzed by physical simulation. And the detection experiment of underground pipelines is carried out outdoors. The results show that the dual launcher can significantly reduce the turn-off time, thereby effectively reducing the impact of the blind area on the detection results, and the pipeline detection results verify the device’s effectiveness. Finally, based on the ground experimental results, the application prospect of mine advanced detection is discussed. Compared with other detection fields, the formation of blind areas is mainly caused by the equipment. If the dual launcher can be used to reduce the blind area, the accuracy of advanced detection can be improved more effectively. The above research results are of great significance for improving the detection accuracy of the underground transient electromagnetic method.
基金This work was financially supported by the National Natural Science Foundation of China(NSFC)Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(Grant No.U19B6003-04-03-03)State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development Projects(No.20-YYGZ-KF-GC-11)+1 种基金the Strategic Priority Research program of the Chinese Academy of Sciences(Grant No.XDA14010101)the National Science and Technology Major Project(Grant No.2017ZX05005005-005 and 2016ZX05014002-001).
文摘Fracture porosity is one of the key parameters for characterizing fractured reservoirs.However,fracture porosity calculation is difficult with conventional logging data due to severe anisotropy of the reservoirs.To deal with the problem,the equivalent macroscopic anisotropic formation model based on dual laterolog(DLL)data is adopted to cyclically assign such parameters as bedrock resistivity(RB),fluid resistivity in fractures(RFL),fracture dip angle(FDA)and fracture thickness as well as fracture spacing,and to produce massive data for formation modeling.A large number of training data obtained through three dimensional finite element forward modeling and the functional relationship between DLL responses and fracture parameters that are trained and summarized by deep neural network,are combined to establish a new fast forward model for calculating DLL responses in fractured formations.A new fracture porosity inversion model for fractured reservoirs based on gradient optimization inversion algorithm combined with multi-initial inversion strategy is then proposed.While running the model,formation is divided into eight intervals according to bedrock resistivity and fracture dip angle from 0°to 90°is divided every 0.5°to improve the operation speed and efficiency.The results of numerical verification show that when bedrock resistivity is greater than 1000Ωm,the mean absolute error(MAE)of fracture porosity inversion is 0.001658%for horizontal fractures,0.00413%for intermediate fractures and 0.0027%for quasi-vertical fractures.When bedrock resistivity is between 100Ωm and 1000Ωm,MAE of fracture porosity inversion is 0.003%for horizontal fractures,0.0034%for intermediate fractures and 0.00348%for quasi-vertical fractures.Fracture parameters determined by the fracture porosity inversion model with actual data are in good agreement with the results of micro resistivity imaging logging.
基金Project(41174103)supported by the National Natural Science Foundation of ChinaProject(2010-211)supported by the Foreign Mineral Resources Venture Exploration Special Fund of China
文摘In mineral exploration, the apparent resistivity and apparent frequency (or apparent polarizability) parameters of induced polarization method are commonly utilized to describe the induced polarization anomaly. When the target geology structure is significantly complicated, these parameters would fail to reflect the nature of the anomaly source, and wrong conclusions may be obtained. A wavelet approach and a metal factor method were used to comprehensively interpret the induced polarization anomaly of complex geologic bodies in the Adi Bladia mine. Db5 wavelet basis was used to conduct two-scale decomposition and reconstruction, which effectively suppress the noise interference of greenschist facies regional metamorphism and magma intrusion, making energy concentrated and boundary problem unobservable. On the basis of that, the ore-induced anomaly was effectively extracted by the metal factor method.
基金supported by the National Natural Science Foundation of China (10772014)
文摘The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51461033,51571126,51541105,and 11547032)the Natural Science Foundation of Inner Mongolia,China(Grant No.2013MS0110)the Inner Mongolia University of Science and Technology Innovation Fund,China
文摘Resource-saving(PrNdCe)_2Fe_(14)B sintered magnets with nominal composition(PrNd)_(15-x)Ce_xFe_(77)B_8(x=0–10)were prepared using a dual alloy method by mixing(PrNd)_5Ce_(10)Fe_(77)B_8 with(PrNd)_(15)Fe_(77)B_8 powders. For Ce atomic percent of 1% and 2%, coercivity decreases dramatically. With further increase of Ce atomic percent, the coercivity increases, peaks at 6.38 kOe in(PrNd)_(11)Ce_4Fe_(77)B_8, and then declines gradually. The abnormal dependence of coercivity is likely related to the inhomogeneity of rare earth chemical composition in the intergranular phase, where Pr Nd concentration is strongly dependent on the additive amount of(PrNd)_5Ce_(10)Fe_(77)B_8 powders. In addition, for Ce atomic percent of 8%,7%, and 6% the coercivity is higher than that of magnets prepared by the conventional method, which shows the advantage of the dual alloy method in preparing high abundant rare earth magnets.
文摘Combining Dual Reciprocity Method (DRM) with Hybrid Boundary Node Method (HBNM), the Dual Reciprocity Hybrid Boundary Node Method (DRHBNM) is developed for three-dimensional linear elasticity problems with body force. This method can be used to solve the elasticity problems with body force without domain integral, which is inevitable by HBNM. To demonstrate the versatility and the fast convergence of this method, some numerical examples of 3-D elasticity problems with body forces are examined. The computational results show that the present method is effective and can be widely applied in solving practical engineering problems.
基金supported by the National High Technology Research and Development Program of China(863 Program)(2007AA04Z102)the National Natural Science Foundation of China(6087407160574077).
文摘As one of the basic inventory cost models, the (Q, τ)inventory cost model of dual suppliers with random procurement lead time is mostly formulated by using the concepts of "effective lead time" and "lead time demand", which may lead to an imprecise inventory cost. Through the real-time statistic of the inventory quantities, this paper considers the precise (Q, τ) inventory cost model of dual supplier procurement by using an infinitesimal dividing method. The traditional modeling method of the inventory cost for dual supplier procurement includes complex procedures. To reduce the complexity effectively, the presented method investigates the statistics properties in real-time of the inventory quantities with the application of the infinitesimal dividing method. It is proved that the optimal holding and shortage costs of dual supplier procurement are less than those of single supplier procurement respectively. With the assumption that both suppliers have the same distribution of lead times, the convexity of the cost function per unit time is proved. So the optimal solution can be easily obtained by applying the classical convex optimization methods. The numerical examples are given to verify the main conclusions.
文摘Principles of polynomial fitting zero offset profile are introduced, and a new polynomial fitting method, tbe time-amplitude dual fitting method, is developed. The method can be used to purify seismic waves and suppress multiples. The effect of suppressing multiples is compared with other multiple suppression methods.
基金Project supported by the National Natural Science Foundation of China(No.5140232)the National Science and Technology Major Project(No.2011ZX05038003)the China Postdoctoral Science Foundation(No.2014M561074)
文摘Based on the characteristics of fractures in naturally fractured reservoir and a discrete-fracture model, a fracture network numerical well test model is developed. Bottom hole pressure response curves and the pressure field are obtained by solving the model equations with the finite-element method. By analyzing bottom hole pressure curves and the fluid flow in the pressure field, seven flow stages can be recognized on the curves. An upscaling method is developed to compare with the dual-porosity model (DPM). The comparisons results show that the DPM overestimates the inter-porosity coefficient ), and the storage factor w. The analysis results show that fracture conductivity plays a leading role in the fluid flow. Matrix permeability influences the beginning time of flow from the matrix to fractures. Fractures density is another important parameter controlling the flow. The fracture linear flow is hidden under the large fracture density. The pressure propagation is slower in the direction of larger fracture density.
基金the National Natural Science Foundation of China under Grant No.10474016.
文摘In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.
基金This work is supported by the National Key Research and Development Plan of China under Grants No.2018YFC1503604the National Natural Science Foundation of China under Grants No.41721003,No.42074007the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,Wuhan University,No.19-01-08。
文摘As an important model for explaining the seismic rupture mode,the asperity model plays an important role in studying the stress accumulation of faults and the location of earthquake initiation.Taking Qilian-Haiyuan fault as an example,this paper combines geodetic method and b-value method to propose a multi-source observation data fusion detection method that accurately determines the asperity boundary named dual threshold search method.The method is based on the criterion that the b-value asperity boundary should be most consistent with the slip deficit rate asperity boundary.Then the optimal threshold combination of slip deficit rate and b-value is obtained through threshold search,which can be used to determine the boundary of the asperity.Based on this method,the study finds that there are four potential asperities on the Qilian-Haiyuan fault:two asperities(A1 and A2)are on the Tuolaishan segment and the other two asperities(B and C)are on Lenglongling segment and Jinqianghe segment,respectively.Among them,the lengths of asperities A1 and A2 on Tuolaishan segment are 17.0 km and 64.8 km,respectively.And the lower boundaries are 5.5 km and 15.5 km,respectively;The length of asperity B on Lenglongling segment is 70.7 km,and the lower boundary is 10.2 km.The length of asperity C on Jinqianghe segment is 42.3 km,and the lower boundary is 8.3 km.
文摘The present work deals with the reflection of plane seismic waves at the stress-free plane surface of double-porosity dualpermeability material. The incidence of two main waves(i.e., P1 and SV) is considered. As a result of the incident waves,four reflected(three longitudinal and one shear) waves are found in the medium. The expressions of reflection coefficients for a given incident wave are obtained as a non-singular system of linear equations. The energy shares of reflected waves are obtained in the form of an energy matrix. A numerical example is considered to calculate the partition of incident energy for fully closed as well as perfectly open pores. Effect of incident direction on the partition of the incident energy is analyzed with the change in wave frequency, wave-induced fluid-flow, pore-fluid viscosity and double-porosity structure. It has been confirmed from the numerical interpretation that during the reflection process, conservation of incident energy is obtained at each angle of incidence.
文摘Phenomena of reflection and refraction of plane harmonic waves at a plane interface between an elastic solid and doubleporosity dual-permeability material are investigated. The elastic solid behaves non-dissipatively, while double-porosity dual-permeability materials behave dissipatively to wave propagation due to the presence of viscosity in pore fluids. All the waves(i.e., incident and reflected) in an elastic medium are considered as homogeneous(i.e., having the same directions of propagation and attenuation), while all the refracted waves in double-porosity dual-permeability materials are inhomogeneous(i.e., having different directions of propagation and attenuation). The coefficients of reflection and refraction for a given incident wave are obtained as a non-singular system of linear equations. The energy shares of reflected and refracted waves are obtained in the form of an energy matrix. A numerical example is considered to calculate the partition of incident energy among various reflected and refracted waves. The effect of incident direction on the partition of the incident energy is analyzed with a change in wave frequency, wave-induced fluid-flow, pore-fluid viscosity and double-porosity structure.It has been confirmed from numerical interpretation that during the reflection/refraction process, conservation of incident energy is obtained at each angle of incidence.
文摘A nonlinear dual-porosity model considering a quadratic gradient term is presented. Assuming the pressure difference between matrix and fractures as a primary unknown, to avoid solving the simultaneous system of equations, decoupling of fluid pressures in the blocks from the fractures was furnished with a quasi-steady-state flow in the blocks. Analytical solutions were obtained in a radial flow domain using generalized Hankel transform. The real value cannot be gotten because the analytical solutions were infinite series. The real pressure value was obtained by numerical solving the eigenvalue problem. The change law of pressure was studied while the nonlinear parameters and dual-porosity parameters changed, and the plots of typical curves are given. All these result can be applied in well test analysis.
文摘On the basis of investigated enhancement effect of La, Nd, Eu, and Y on Sm determination with monoxide molecular emission spectrometry, La was selected as enhancement agent and chemical interference inhibitor. In the presence of La, dual wavelength mothod was introduced to eliminate the spectral interference on Sm by other elements. A new method was established to determine samarium in high yttrium rare earth samples with satisfactory results.
基金Project supported by the National Natural Science Foundation of China(Grant No.51590880)the National Key Research and Development Program of China(Grant Nos.2014CB643702 and 2016YFB0700903)+1 种基金Key Research Program of the Chinese Academy of Sciences of Chinathe Inner Mongolia Science and Technology Major Project of China 2016
文摘The misch-metal (MM) partially substituted Nd-Fe-B sintered magnets were fabricated by the dual alloy method, and the crystal structure, microstructure, and magnetic properties were analyzed comprehensively. X-ray diffraction (XRD) reveals that the increasing content of the MM has an inconsiderable effect on the crystallographic alignment of the magnets. Grains of the two main phases are uniformly distributed, and slightly deteriorate on the grain boundary. Due to the diffusion between the adjacent grains, the MM substituted Nd-Fe-B magnets contain three types of components with different Ce/La concentrations. Moreover, the first-order reversal curve (FORC) diagram is introduced to analyze the magnetization reversal process, coercivity mechanism, and distribution of reversal field in magnetic samples. The analysis indicates that there are two major reversal components, corresponding to the two different main phases. The domain nucleation and growth are determined to be the leading mechanism in controlling the magnetization reversal processes of the magnets sintered by the dual alloy method.
文摘Density and porosity are fundamental and important physical properties of rocks in various geological problems, and affect the other physical properties. Therefore, measurements of density and porosity of rock samples are important investigation items in both geo-science and geo-engineering areas. Several measurement techniques of the density and porosity are available and being applied currently. To ensure the data quality and to conduct its quality assessment, comparison of measurement results by different measurement techniques is necessary since the techniques are based on different principles and test procedures. In this study, we collected eight types of rock samples including a gabbro, a granite, four sandstones, a welded tuff and a mudstone as study materials, and also prepared several metal specimens for the experimental comparison. The porosities of the eight rocks covered a very wide range from 0.3% to 50% approximately. We employed three methods (caliper, buoyancy and helium-displacement pycnometer) to measure volumes of regularly-shaped specimens and to determine their bulk densities and porosities. As a result, the three techniques yielded almost same bulk densities and porosities for all the specimens. In addition, we also applied mercury intrusion porosimetry to measure density and porosity as well as to determine pore size distribution of the rock samples. Porosity values obtained by the porosimetry method were underestimated in the case of high-porosity (soft) rock samples and overestimated for the very low-porosity rock samples. Ability to determine pore size distribution, however, is a very important advantage of the porosimetry method.
文摘In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation del(2) u + u + epsilon u(3) = b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method (DRM) in solving nonlinear differential equations.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51809209 and 11702244)the Open Fund of Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province(Grant No.2021SS04).
文摘The scattering of normally incident water waves by two surface-piercing inclined perforated barriers in water with a uniform finite depth is investigated within the framework of linear water wave theory.Considering that thin barriers are zero-thickness,a novel numerical method involving the the coupling of the dual boundary element method(DBEM)with damping layers is applied.In order to effectively damp out the reflected waves,two damping layers,instead of pseudoboundaries are implemented near the two side boundaries of the computational domain.Thus,the modified linearized free surface boundary conditions are formulated and used for solving both the ordinary boundary integral equation as well as the hypersingular boundary integral equation for degenerate boundaries.The newly developed numerical method is validated against analytical methods using the matched eigenfunction expansion method for the special case of two vertical barriers or the inclined angle to the vertical being zero.The influence of the length of the two damping layers has been discussed.Moreover,these findings are also validated against previous results for several cases.After validation,the numerical results for the reflection coefficient,transmission coefficient and dissipation coefficient are obtained by varying the inclination angle and porosity-effect parameter.The effects of both the inclination angle and the porosity on the amplitudes of wave forces acting on both the front and rear barriers are also investigated.It is found that the effect of the inclination angle mainly shifts the location of the extremal values of the reflection and the transmission coefficients.Additionally,a moderate value of the porosity-parameter is quite effective at dissipating wave energy and mitigating the wave loads on dual barriers.
文摘dual-standard addition method was proposed and the principle of simultaneous determination for a interfering binary mixtures was discussed. The proposed procedure was applied to spectroscopic analyses for the simultaneous determination of uranium and thorium without prior separation. Various molar ratios of uranium/thorium, from 0.5∶1 to 10∶1, can be determined with satisfactory precision and accuracy. Uranium and thorium content in a phosphate ore and simulated sample were determined, the recoveries were 98.4%~102.5% for uranium and 96.8%~102.3% for thorium, the relative standard deviations (R.S.D) were 1.5%~2.3% for uranium and 2.1%~3.1% for thorium.