Large range-high precision measurement has always been a challenge in the field of mechanical measurements. This paper built the input-output differential equation of Dual Range Pressure Sensor(DRPS) and gave an error...Large range-high precision measurement has always been a challenge in the field of mechanical measurements. This paper built the input-output differential equation of Dual Range Pressure Sensor(DRPS) and gave an error compensation algorithm of DRPS after analyzing the mathematical model of DRPS. For a given situation, dynamic measurement errors of sensor parameters can be compensated by this method. Finally the accuracy and feasibility of the method were verified using Adams Software.展开更多
A rapid method of determination of BaP in various environmental samples,using synchronous fluorescence spectroscopy scanning in defined range of dual-wavelengths(SFDW)is described in this paper.
The most dominant error source for microwave ranging is the frequency instability of the oscillator that generates the carrier phase signal. The oscillator noise is very difficult to filter due to its extremely low fr...The most dominant error source for microwave ranging is the frequency instability of the oscillator that generates the carrier phase signal. The oscillator noise is very difficult to filter due to its extremely low frequency. A dual transponder carrier ranging method can effectively minimize the oscillator noise by combing the reference phase and the to-and-fro measurement phase from the same single oscillator. This method does not require an accurate time tagging system, since it extracts phases on the same satellite. This paper analyzes the dual transponder carrier ranging system by simulation of the phase measurements with comprehensive error models. Both frequency domain and time domain noise transfer characteristics were simulated to compare them with dual one-way ranging. The simulation results in the two domains conformed to each other and demonstrated that a high level of accuracy can also be achieved by use of the dual transponder carder ranging system, with relatively simple instruments.展开更多
基金the Special Research Fund for the Doctoral Program of Higher Education(No.20101514120002)the National Natural Science Foundation of China(No.11262014)
文摘Large range-high precision measurement has always been a challenge in the field of mechanical measurements. This paper built the input-output differential equation of Dual Range Pressure Sensor(DRPS) and gave an error compensation algorithm of DRPS after analyzing the mathematical model of DRPS. For a given situation, dynamic measurement errors of sensor parameters can be compensated by this method. Finally the accuracy and feasibility of the method were verified using Adams Software.
文摘A rapid method of determination of BaP in various environmental samples,using synchronous fluorescence spectroscopy scanning in defined range of dual-wavelengths(SFDW)is described in this paper.
基金Project(No.NCET-06-051)supported by the Program for New Century Excellent Talents in University,China
文摘The most dominant error source for microwave ranging is the frequency instability of the oscillator that generates the carrier phase signal. The oscillator noise is very difficult to filter due to its extremely low frequency. A dual transponder carrier ranging method can effectively minimize the oscillator noise by combing the reference phase and the to-and-fro measurement phase from the same single oscillator. This method does not require an accurate time tagging system, since it extracts phases on the same satellite. This paper analyzes the dual transponder carrier ranging system by simulation of the phase measurements with comprehensive error models. Both frequency domain and time domain noise transfer characteristics were simulated to compare them with dual one-way ranging. The simulation results in the two domains conformed to each other and demonstrated that a high level of accuracy can also be achieved by use of the dual transponder carder ranging system, with relatively simple instruments.